Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(49): 45574-45581, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530294

ABSTRACT

Inhaled aerosols are absorbed across the oral cavity, respiratory tract, and gastrointestinal tract. The absorption across the oral cavity, which is one of the exposure routes, plays an important role in understanding pharmacokinetics and physiological effects. After aerosol exposure from e-cigarettes, tissue viability studies, morphological observation, and chemical analyses at the inner and outer buccal tissues were performed using organotypic 3D in vitro culture models of the buccal epithelium to better understand the deposition and absorption on the inner and outer buccal tissues. The aerosol exposures did not affect the tissue viability and had no change to the tissue morphology and structure. The deposition ratio at the buccal tissue surface is relatively low. This shows that majority of aerosol transfers to the airway tissues. The distribution from the inner tissue to the outer tissue has selectivity among various compounds, depending on the affinity with the liquid crystal structure of phospholipids and glucosylceramide. Although nicotine absorption in the aqueous solution was well known to increase as the unprotonated state of nicotine increased, the nicotine absorption after the aerosol exposure is irrelevant to the protonated-unprotonated state. Furthermore, the results showed that half of nicotine that adhered to the oral cavity transferred to the inner tissue via the oral epithelium and the other half transferred to the gastrointestinal tract accompanying multiple executions of swallowing, while majority of the water-soluble compounds with the hydroxyl group such as propylene glycol and benzoic acid that adhered to the oral cavity were eluted with the saliva and transferred to the gastrointestinal tract by swallowing.

2.
Sci Rep ; 11(1): 31, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420144

ABSTRACT

A biomembrane's role is to be a barrier for interior cytosol from an exterior environment to execute the cell's normal biological functions. However, a water-soluble peptide called cell-penetrating peptide (CPP) has been known for its ability to directly penetrate through the biomembranes into cells (cytolysis) without perturbating cell viability and expected to be a promising drug delivery vector. Examples of CPP include peptides with multiple arginine units with strong cationic properties, which is the key to cytolysis. Here we show the conclusive evidence to support the mechanism of CPP's cytolysis and way to control it. The mechanism we proposed is attributed to biomembrane's physicochemical nature as lamellar liquid crystal (Lα). Cytolysis occurs as the temporal and local dynamic phase transitions from Lα to an undulated lamellar with pores called Mesh1. We have shown this phase transfer of Lα composed of dioleoyl-phosphatidylcholine (DOPC) with water by adding oligo-arginine (Rx) as CPP at the equilibrium. Using giant unilamellar vesicle composed of DOPC as a single cell model, we could control the level of cytolysis of CPP (FITC-R8) by changing the curvature of the membrane through osmotic pressure modulation. The cytolysis of CPP utilizes biomembrane's inherent topological and functional flexibility corresponding to the stimuli.


Subject(s)
Cell Membrane/metabolism , Cell-Penetrating Peptides/metabolism , Animals , Cell Membrane/chemistry , Cell Membrane Permeability , Cell-Penetrating Peptides/chemistry , Chemical Phenomena , Cytosol/metabolism , Drug Delivery Systems , Erythrocytes/metabolism , Hypopituitarism , In Vitro Techniques , Liquid Crystals/chemistry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Models, Biological , Osmotic Pressure , Peptides/chemistry , Peptides/metabolism , Scattering, Small Angle , X-Ray Diffraction
3.
Int J Mol Sci ; 21(19)2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33036492

ABSTRACT

A specific series of peptides, called a cell-penetrating peptide (CPP), is known to be free to directly permeate through cell membranes into the cytosol (cytolysis); hence, this CPP would be a potent carrier for a drug delivery system (DDS). Previously, we proposed the mechanism of cytolysis as a temporal and local phase transfer of membrane lipid caused by positive membrane curvature generation. Moreover, we showed how to control the CPP cytolysis. Here, we investigate the phospholipid vesicle's size effect on CPP cytolysis because this is the most straightforward way to control membrane curvature. Contrary to our expectation, we found that the smaller the vesicle diameter (meaning a higher membrane curvature), the more cytolysis was suppressed. Such controversial findings led us to seek the reason for the unexpected results, and we ended up finding out that the mobility of membrane lipids as a liquid crystal is the key to cytolysis. As a result, we could explain the cause of cytolysis suppression by reducing the vesicle size (because of the restriction of lipid mobility); osmotic pressure reduction to enhance positive curvature generation works as long as the membrane is mobile enough to modulate the local structure. Taking all the revealed vital factors and their effects as a tool, we will further explore how to control CPP cytolysis for developing a DDS system combined with appropriate cargo selection to be tagged with CPPs.


Subject(s)
Cell-Penetrating Peptides/metabolism , Cytoplasmic Vesicles/metabolism , Algorithms , Biological Transport , Cell Membrane/metabolism , Cell Membrane Permeability , Chemical Phenomena , Cytoplasmic Vesicles/chemistry , Cytoplasmic Vesicles/ultrastructure , Lipid Bilayers/chemistry , Models, Theoretical , Spectrum Analysis
4.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751745

ABSTRACT

Cell-penetrating peptide (CPP) can directly penetrate the cytosol (cytolysis) and is expected to be a potent vector for a drug delivery system (DDS). Although there is general agreement that CPP cytolysis is related to dynamic membrane deformation, a distinctive process has yet to be established. Here, we report the key process and factors controlling CPP cytolysis. To elucidate the task, we have introduced trypsin digestion of adsorbed CPP onto giant unilamellar vesicle (GUV) to quantify the adsorption and internalization (cytolysis) separately. Also, the time-course analysis was introduced for the geometric calculation of adsorption and internalization amount per lipid molecule consisting of GUV. As a result, we found that adsorption and internalization assumed to occur successively by CPP molecule come into contact with membrane lipid. Adsorption is quick to saturate within 10 min, while cytolysis of each CPP on the membrane follows successively. After adsorption is saturated, cytolysis proceeds further linearly by time with a different rate constant that is dependent on the osmotic pressure. We also found that temperature and lipid composition influence cytolysis by modulating lipid mobility. The electrolyte in the outer media is also affected as a chemical mediator to control CPP cytolysis by following the Hoffmeister effect for membrane hydration. These results confirmed the mechanism of cytolysis as temporal and local phase transfer of membrane lipid from Lα to Mesh1, which has punctured bilayer morphologies.


Subject(s)
Cell Membrane Permeability/drug effects , Cell-Penetrating Peptides/chemistry , Drug Delivery Systems , Lipid Bilayers/chemistry , Animals , Arginine/chemistry , Cell Membrane/drug effects , Cell-Penetrating Peptides/pharmacology , Chickens , Cytosol/chemistry , Cytosol/drug effects , Egg Yolk/chemistry , Fluorescein-5-isothiocyanate/chemistry , Membrane Lipids/chemistry , Trypsin/chemistry , Trypsin/pharmacology , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/pharmacology
5.
Langmuir ; 30(26): 7654-9, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24912111

ABSTRACT

Ternary mixtures being composed of surfactant, long-chain alcohol, and water sometimes form a highly viscous lamellar gel with a hexagonal packing arrangement of their crystalline hydrocarbon chains. This molecular assembly is called "α-crystalline phase" or "α-gel". In this study, we have characterized α-gels formed by the ternary mixtures of amino acid-based gemini surfactants, 1-hexadecanol (C16OH), and water. The surfactants used in this study were synthesized by reacting dodecanoylglutamic acid anhydride with alkyl diamines and abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). An amino acid-based monomeric surfactant, dodecanoylglutamic acid (12-Glu), was also used for comparison. At a fixed water concentration the melting point of the α-gel increased with increasing C16OH concentration, and then attained a saturation level at the critical mole ratio of 12-GsG-12/C16OH = 1/2 under the normalization by the number of hydrocarbon chains of the surfactants. This indicates that, to obtain the saturated α-gel, a lesser amount of C16OH is required for the gemini surfactants than for the monomeric one (the critical mole ratio of 12-Glu/C16OH = 1/3). Small- and wide-angle X-ray scattering measurements demonstrated an increase in the long-range d-spacing of the saturated α-gels in the order 12-Glu <12-G8G-12 < 12-G5G-12 < 12-G2G-12. In the three gemini surfactant systems, the decreased spacer chain length resulted in the increased maximum viscosity and elastic modulus of the saturated α-gels at a given water concentration. This is caused by the decreased amount of excess water being present outside the α-gel structure (or the increased amount of water incorporated between the surfactant-alcohol bilayers). To the best of our knowledge, this is the first report focusing on the formation of α-gel in gemini surfactant systems.

6.
J Oleo Sci ; 63(3): 249-55, 2014.
Article in English | MEDLINE | ID: mdl-24712086

ABSTRACT

We studied the effects of the spacer chain length of amino acid-based gemini surfactants on the formation of wormlike micelles in aqueous solutions. The surfactants used were synthesized by reacting dodecanoylglutamic acid anhydride with diamine compounds (ethylenediamine, pentanediamine, and octanediamine), and were abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). These surfactants yielded viscoelastic wormlike micellar solutions at pH 9 upon mixing with a cationic monomeric surfactant, hexadecyltrimethylammonium bromide (HTAB). We found that the rheological behavior was strongly dependent on the spacer chain length and HTAB concentration. When the shortest spacer chain analogue (12-G2G-12) was used, an increased HTAB concentration resulted in the following structural transformations of the micelles: (i) spherical or rodlike micelles; (ii) anionic wormlike micelles exhibiting a transient network structure; (iii) anionic wormlike micelles with a micellar branching or interconnected structure; and (iv) cationic wormlike micelles. Similarly, when the middle spacer chain analogue (12-G5G-12) was used, a structural transformation from anionic to cationic wormlike micelles occurs; however, molecular aggregates with a lower positive curvature were also formed in this transition region. When the longest spacer analogue (12-G8G-12) was used, the formation of cation-rich molecular aggregates was not observed. These transition behaviors were attributed to the packing geometry of the gemini surfactants with HTAB. Additionally, as the spacer chain length increased, the zero-shear viscosity in the anionic wormlike micellar region decreased, suggesting limited one-dimensional micellar growth of spherical, rodlike, or anionic wormlike micelles.


Subject(s)
Amino Acids/chemistry , Calcitriol/analogs & derivatives , Micelles , Surface-Active Agents/chemistry , Anhydrides/chemistry , Bentonite/chemistry , Calcitriol/chemical synthesis , Calcitriol/chemistry , Ethylenediamines/chemistry , Glutamates/chemistry , Hydrogen-Ion Concentration , Quaternary Ammonium Compounds/chemistry , Solutions , Surface-Active Agents/chemical synthesis , Viscosity , Water
7.
J Dermatol Sci ; 72(3): 296-303, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24070864

ABSTRACT

BACKGROUND: Ceramide hydrolysis by ceramidase in the stratum corneum (SC) yields both sphingoid bases and free fatty acids (FFA). While FFA are key constituents of the lamellar bilayers that mediate the epidermal permeability barrier, whether sphingoid bases influence permeability barrier homeostasis remains unknown. Pertinently, alterations of lipid profile, including ceramide and ceramidase activities occur in atopic dermatitis (AD). OBJECT: We investigated alterations in sphingoid base levels and/or profiles (sphingosine to sphinganine ratio) in the SC of normal vs. AD mice, a model that faithfully replicates human AD, and then whether altered sphingoid base levels and/or profiles influence(s) membrane stability and/or structures. METHODS: Unilamellar vesicles (LV), incorporating the three major SC lipids (ceramides/FFA/cholesterol) and different ratios of sphingosine/sphinganine, encapsulating carboxyfluorescein, were used as the model of SC lipids. Membrane stability was measured as release of carboxyfluorescein. Thermal analysis of LV was conducted by differential scanning calorimetry (DSC). RESULTS: LV containing AD levels of sphingosine/sphinganine (AD-LV) displayed altered membrane permeability vs. normal-LV. DSC analyses revealed decreases in orthorhombic structures that form tightly packed lamellar structures in AD-LV. CONCLUSION: Sphingoid base composition influences lamellar membrane architecture in SC, suggesting that altered sphingoid base profiles could contribute to the barrier abnormality in AD.


Subject(s)
Ceramides/metabolism , Dermatitis, Atopic/metabolism , Epidermis/metabolism , Sphingosine/metabolism , Animals , Cell Membrane Permeability , Disease Models, Animal , Humans , Mice
8.
ACS Chem Biol ; 8(9): 1894-9, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23834464

ABSTRACT

Epsin-1 is a representative protein for inducing the positive curvature necessary for the formation of clathrin-coated pits. Here we demonstrate that the N-terminus 18-residue peptide of epsin-1 (EpN18) has this ability per se, as proved by differential scanning calorimetry (DSC) and solid-state NMR. Moreover, it is shown how this positive curvature promotion can be exploited for promoting the direct penetration of a representative cell-penetrating peptide (CPP), octaarginine (R8), through artificial and plasma membranes. This synergistic effect has been used for the efficient delivery of a proapoptotic domain peptide (PAD), which induced high level of apoptosis only when coadministered with R8 and EpN18, thus emphasizing the importance of positive curvature induction for achieving the desired ultimate cargo bioavailability.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cell-Penetrating Peptides/metabolism , Drug Carriers/metabolism , Fluorescent Dyes/administration & dosage , Oligopeptides/metabolism , Peptides/administration & dosage , Adaptor Proteins, Vesicular Transport/chemistry , Amino Acid Sequence , Cell Membrane/chemistry , Cell Membrane/metabolism , Drug Carriers/chemistry , HeLa Cells , Humans , Molecular Sequence Data
9.
J Oleo Sci ; 62(7): 505-11, 2013.
Article in English | MEDLINE | ID: mdl-23823917

ABSTRACT

We have recently proposed a new general concept regarding amphiphilic materials that have been named as "active interfacial modifier (AIM)." In emulsion systems, an AIM is essentially insoluble in both water and organic solvents; however, it possesses moieties that are attracted to each of these immiscible liquid phases. Hence, an AIM practically stays just at the interface between the two phases and makes the resulting emulsion stable. In this study, the effects of silicone oil species on the dispersion stability of water-in-oil (W/O) emulsions in the presence of an AIM sample were evaluated in order to understand the destabilization mechanism in such emulsion systems. The AIM sample used in this study is an amphiphilic polymer consisting of a silicone backbone modified with hydrocarbon chains and hydrolyzed silk peptides. The Stokes equation predicts that the sedimentation velocity of water droplets dispersed in a continuous silicone oil phase simply depends on the expression (ρ - ρ0)/η assuming that the droplet size is constant (where ρ is the density of the dispersed water phase, ρ0 is the density of the continuous silicone oil phase, and η is the viscosity of the oil phase). The experimental results shown in this paper are consistent with the Stokes prediction: i.e., in the low-viscous genuine or quasi-Newtonian fluid region, the dispersion stability increases in the following order: dodecamethylpentasiloxane (DPS) < decamethylcyclopentasiloxane (D5) ≤ dodecamethylcyclohexasiloxane (D6). This order agrees well with the order obtained by using the expression (ρ - ρ0)/η as DPS > D5 > D6. This indicates that our emulsion system experiences destabilization through sedimentation, but hardly any coalescence occurs owing to the presence of an additional third phase consisting of the AIM that stabilizes the silicone oil/water interface in the emulsions.


Subject(s)
Peptides/chemistry , Silicone Oils/chemistry , Silk/chemistry , Water/chemistry , Emulsions , Viscosity
10.
Langmuir ; 29(19): 5668-76, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23574008

ABSTRACT

Recently, we have reported a new cinnamic acid-type photocleavable surfactant, C4-C-N-PEG9 that experiences a photocleavage through UV-induced cyclization in aqueous solution, yielding a coumarin derivative (7-butoxy-2H-chromen-2-one) and an aminated polyoxyethylene compound. Here, we have studied the effects of C4-C-N-PEG9 on the photorheological behavior of viscoelastic wormlike micelles formed by aqueous mixture of nonionic surfactants, polyoxyethylene phytosterol ether (PhyEO20) and tetraoxyethylene dodecyl ether (C12EO4). The 4.9 wt % PhyEO20/H2O + 2.4 wt % C12EO4 solution forms wormlike micelles, and its viscosity is ~10 Pa·s. We have found that the addition of C4-C-N-PEG9 into this viscous, non-Newtonian fluid system decreases the viscosity. Viscosity decreased in parallel to the C4-C-N-PEG9 concentration reaching ~0.003 Pa·s at 2.5 wt % of C4-C-N-PEG9. However, viscosity of the C4-C-N-PEG9 incorporated system increased significantly (~200 times at 1.5 wt % of C4-C-N-PEG9 system) upon UV irradiation. Small-Angle X-ray scattering studies have shown that addition of C4-C-N-PEG9 favors wormlike-to-sphere type transition in the micellar structure. However, UV irradiation in the C4-C-N-PEG9 incorporated system causes one-dimensional micellar growth. Since C4-C-N-PEG9 has relatively bigger headgroup size compared to the C12EO4, addition of C4-C-N-PEG9 into wormlike micelles reduces the critical packing parameter resulting in the formation of spherical aggregates. UV irradiation induced one-dimensional micellar growth is caused due to photocleavage of the C4-C-N-PEG9 into a less surface-active coumarin derivative and an aminated polyoxyethylene compound, as confirmed by UV-vis spectrometry and HPLC measurements. The hydrophobic coumarin derivative formed after cleavage of C4-C-N-PEG9 goes to the micellar core and is responsible for decreasing the viscosity. However, the hydrophilic aminated polyoxyethylene prefers to reside at the vicinity of headgroup of PhyEO20 reducing the interhead repulsion, increasing the critical packing parameter and the viscosity as well.


Subject(s)
Surface-Active Agents/chemistry , Cinnamates/chemistry , Micelles , Molecular Structure , Photochemical Processes , Rheology , Water/chemistry
11.
Langmuir ; 28(51): 17617-22, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23157727

ABSTRACT

Rheological properties of alkyl dicarboxylic acid-alkylamine complex systems have been characterized. The complex materials employed in this study consist of an amino acid-based surfactant (dodecanoylglutamic acid, C12Glu) and a tertiary alkylamine (dodecyldimethylamine, C12DMA) or a secondary alkylamine (dodecylmethylamine, C12MA). (1)H NMR and mass spectroscopic data have suggested that C12Glu forms a stoichiometric 1:1 complex with C12DMA and C12MA. Rheological measurements have suggested that the complex systems yield viscoelastic wormlike micellar solutions and the rheological behavior is strongly dependent on the aqueous solution pH. This pH-dependent behavior results from the structural transformation of the wormlike micelles to occur in the narrow pH range 5.5-6.2 (in the case of C12Glu-C12DMA system); i.e., positive curved aggregates such as spherical or rodlike micelles tend to be formed at high pH values. Our current study offers a unique way to obtain viscoelastic wormlike micellar solutions by means of alkyl dicarboxylic acid-alkylamine complex as gemini-like amphiphiles.


Subject(s)
Amines/chemistry , Glutamates/chemistry , Methylamines/chemistry , Micelles , Molecular Conformation , Chemical Phenomena , Models, Molecular , Rheology
12.
Langmuir ; 28(44): 15472-81, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23075203

ABSTRACT

Aqueous binary phase behavior of a peptide-based gemini amphiphile with glutamic acid and lysine as spacer group, acylglutamyllysilacylglutamate (m-GLG-m where m = 12, 14, and 16), has been reported over a wide range of concentration and temperature. Lauroylglutamyllysillauroylglutamate, 12-GLG-12, self-assembles into spherical micelles above critical micelle concentration (CMC). The micellar region extends up to 32 wt %, and an ordering of spherical micelles into micellar cubic phase, I(1), takes place at 33 wt % at 25 °C. The phase transition, I(1) - hexagonal liquid crystal, (H(1)) - lamellar liquid crystal, (L(α)) has been observed with further increase in concentration; moreover, mixed phases are also observed between the pure liquid crystal domains. Similar phases were observed with 16-GLG-16 above 50 °C (Krafft temperature). The partial ternary phase behavior shows that the micellar solutions of m-GLG-m can solubilize a large amount of cationic amphiphile, alkyltrimethylammonium bromide, C(n)TAB, (where n = 14 (TTAB) and 16 (CTAB)) at 25 °C. An addition of C(n)TAB to the aqueous solutions of 16-GLG-16 in a dilute region forms a transparent solution of viscoelastic wormlike micelles at very low concentration (0.25 wt %) even at ambient condition. A mixture of oppositely charged amphiphiles, m-GLG-m and C(n)TAB, exhibits synergism as a result the amphiphile layer curvature, becomes less positive, and favors the transition from sphere to rod to transient networks (wormlike micelles). The gemini amphiphile, 16-GLG-16, forms wormlike micelles at relatively low concentrations compared to others reported so far. Viscosity increases by six orders of magnitude compared to that of pure solvent. The hydrophobic chain length of m-GLG-m and coamphiphile affects the rheology; the maximum viscosity achieved with 16-GLG-16/H(2)O/CTAB is higher than that of 14-GLG-14/H(2)O/CTAB, 12-GLG-12/H(2)O/CTAB, and 16-GLG-16/H(2)O/TTAB systems. These temperature-sensitive systems exhibited viscoelastic behavior described by the Maxwell mechanical model with a single stress relaxation mode.


Subject(s)
Glutamates/chemistry , Peptides/chemistry , Surface-Active Agents/chemistry , Glutamic Acid/chemistry , Lysine/chemistry , Micelles , Rheology , Viscosity
13.
J Colloid Interface Sci ; 376(1): 160-4, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22459027

ABSTRACT

We have developed a novel cinnamic acid-type photo-cleavable surfactant. This surfactant experiences photo-cleavage through UV-induced cyclization in aqueous solutions. The photo-cleavage not only reduces its capabilities as a surfactant but also yields two functional materials including a coumarin derivative and an aminated polyoxyethylene compound. This means that the photo-cleavable surfactant synthesized in this study is a photo-responsive function-exchangeable material. In our current study, we have characterized the photo-cleavable behavior that occurs in aqueous solutions and a resulting change in interfacial properties. The photo-cleavage induces an increased interfacial tension of a squalane/water interface and a decreased solubilization capability of the surfactant micelles.


Subject(s)
Cinnamates/chemistry , Photolysis , Surface-Active Agents/chemistry , Cyclization , Surface Tension , Ultraviolet Rays , Water/chemistry
14.
Photochem Photobiol Sci ; 10(7): 1239-48, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21523270

ABSTRACT

A novel mercury-free Dewar-like (double-walled structure) microwave discharge thermally-insulated electrodeless lamp (MDTIEL) was fabricated and its performance evaluated using the photo-isomerization of trans-urocanic acid (trans-UA) in aqueous media as a test process driven by the emitted UV light when ignited with microwave radiation. The photo-isomerization processes trans-UA → cis-UA and cis-UA → trans-UA were re-visited using light emitted from a conventional high-pressure Hg light source and examined for the influence of UV light irradiance and solution temperature; the temperature dependence of the trans → cis process displayed a negative activation energy, E(a) = -1.3 cal mol(-1). To control the photo-isomerization of urocanic acid from the heat usually dissipated by a microwave discharge electrodeless lamp (single-walled MDEL), it was necessary to suppress the microwave-initiated heat. For comparison, the gas-fill in the MDEL lamp, which typically consists of a mixture of Hg and Ar, was changed to the more eco-friendly N(2) gas in the novel MDTIEL device. The dynamics of the photo-isomerization of urocanic acid driven by the UV wavelengths of the N(2)-MDTIEL light source were compared to those from the more conventional single-walled N(2)-MDEL and Hg/Ar-MDEL light sources, and with those from the Hg lamp used to irradiate, via a fiber optic, the photoreactor located in the wave-guide of the microwave apparatus. The heating efficiency of a solution with the double-walled N(2)-MDTIEL was compared to the efficiency from the single-walled N(2)-MDEL device. Advantages of N(2)-MDTIEL are described from a comparison of the dynamics of the trans-UA → cis-UA process on the basis of unit surface area of the lamp and unit power consumption. The considerably lower temperature on the external surface of the N(2)-MDTIEL light source should make it attractive in carrying out photochemical reactions that may be heat-sensitive such as the photothermochromic urocanic acid system.


Subject(s)
Microwaves , Ultraviolet Rays , Urocanic Acid/chemistry , Hydrogen-Ion Concentration , Isomerism , Temperature , Water/chemistry
15.
J Oleo Sci ; 60(5): 209-15, 2011.
Article in English | MEDLINE | ID: mdl-21502720

ABSTRACT

Although liposomes are considered to be one of the most promising carriers for drug delivery systems (DDS), they have drawbacks such as insufficient drug-entrapment efficiency and long-term stability. The objectives of this study are to improve the trapping efficiency by addition of lipopeptides (LPs), and using a supercritical CO(2) reverse-phase evaporation (SCRPE) process, along with incorporation of PEG-modified phospholipids to improve long-term stability. In this study, bovine serum albumin (BSA) was used as a model drug substance for entrapment by liposomes. Improvements in the entrapment efficiency and stability of liposomes were achieved by modification with LPs and use of a SCRPE preparation process. The BSA-entrapment efficiency of liposomes modified with cationic LPs with arginine residues, as a result of their ionic interactions, was six times that of liposomes prepared by the Bangham method. Use of a SCRPE method along with LP modification further enhanced entrapment and enabled spontaneous formation of unilamellar liposomes with long-term stability. Liposomes consisting of DPPC/Chol/C(16)-Arg2/DSPE-PEG2000 (60/30/5/5), with up to 70% entrapment efficiency for BSA and a stability level of 90% for over 40 h, were obtained. DSC and SAXS analyses indicated that certain amounts of LP in the DPPC induced phase-transitional and structural changes in the lamellar membrane, and these changes improved the DDS carrier properties.The SCRPE method provides organic-solvent-free liposomes, and the LPs for the liposome modification are derivatives of amino acids and fatty acids, which are sustainable and biocompatible materials. This study therefore suggests that there are opportunities for the development of novel DDS carriers with excellent performance and which address environmental concerns.


Subject(s)
Carbon Dioxide/chemistry , Lipopeptides/chemistry , Liposomes/chemical synthesis , Animals , Cattle , Chemistry, Pharmaceutical , Liposomes/chemistry , Molecular Structure , Particle Size , Serum Albumin, Bovine/chemistry , Surface Properties
16.
J Oleo Sci ; 60(4): 197-202, 2011.
Article in English | MEDLINE | ID: mdl-21427516

ABSTRACT

Lamellar lipid layers in the stratum corneum (SC), the outermost layer of the skin, act as a primary permeability barrier to protect the body. The roles of SC lipid composition and membrane structure in skin barrier function have been extensively investigated using ex-vivo SC samples and reconstructed SC lipids in the form of multi-lamellar lipids or liposomes. The primary lipids, especially ceramide, have been found to be highly important. Atopic dermatitis (AD) is a well-known chronic inflammatory skin disease with immunologic and epidermal abnormalities of the permeability barrier; therefore, a comparison of SC lipids in AD skin with those in normal skin is a promising method to explore the mechanisms of skin barrier function. Here, we focused on the effect of sphingoids (ceramide metabolites and a minor component of the SC lipids) and their content/species on skin barrier function. A significant difference in the leakage ratio was observed between model SC lipid liposomes with a different sphingolipid ratio (sphingosine/sphinganine), with a value of 5.43 for normal skin vs. 14.3 for AD skin. This result shows a good concordance with AD mouse experiments. Therefore, an alteration in the composition of minor SC lipids resulting from a ceramide metabolic abnormality can affect the membrane integrity (i.e., skin barrier function). Small angle X-ray scattering (SAXS) measurements revealed no distinct differences in the SAXS pattern between the 3 models, with all models forming a rigid membrane (i.e., a nearly hydrated solid). According to increasing the temperature, the peaks indicated that the lamellar structures decreased in all models and that the lateral packing of lipids decreased, which suggested annealing or melting of the gel to a liquid crystal, although no distinct phase transition was observed through fluorescence anisotropy measurements. Hence, we assume that the altered sphingoid composition triggers local membrane structural changes (i.e., formation of domains or clusters).


Subject(s)
Dermatitis, Atopic/metabolism , Epidermis/chemistry , Liposomes/chemistry , Sphingolipids/analysis , Animals , Epidermis/metabolism , Fluorescence Polarization , Mice , Permeability , Temperature
17.
J Cosmet Sci ; 61(1): 39-48, 2010.
Article in English | MEDLINE | ID: mdl-20211116

ABSTRACT

The dimethyl ether of an amphiphilic random ethylene oxide/propylene oxide copolymer (EPDME) is useful for the preparation of finely dispersed micro-emulsions. We examined whether EPDME is effective for skin moisturization by means of electron paramagnetic resonance (EPR) studies of ex vivo specimens of stratum corneum (SC) obtained by successive stripping. The values of the order parameter S obtained by EPR measurement indicated that EPDME treatment improved sodium dodecyl sulfate (SDS)-induced disruption of SC lipid structures. This effect appeared to be related to improved hydration of the epidermis, not occlusion by EPDME, since there was no significant change in transepidermal water loss (TEWL).


Subject(s)
Emulsions/pharmacology , Epidermis/drug effects , Lipid Metabolism/drug effects , Poloxalene/analogs & derivatives , Poloxalene/pharmacology , Water Loss, Insensible/drug effects , Adult , Electron Spin Resonance Spectroscopy , Epidermis/physiology , Humans , Male , Skin
18.
Langmuir ; 26(8): 5349-54, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20232883

ABSTRACT

We have developed hybrid amphiphilic polymers consisting of a silicone backbone modified with hydrocarbon chains and hydrolyzed silk peptides. These polymers are molecularly soluble neither in water nor in most of organic solvent, but are attractive with these solvents. We assume that this property enables the polymers to form "an independent third phase" between immiscible two liquid phases and stabilize the emulsion system, based on a fundamentally distinguishable mechanism from the approach by conventional surfactants. We have named these amphiphilic polymers "active interfacial modifier (AIM)" and studied physicochemical properties of AIM-stabilized water-in-silicon oil emulsions. The addition of AIM to a mixture of water and decamethylcyclopentasiloxane (D(5)) has achieved preparation of stable W/O emulsions (droplet size = ca. 1 microm) in a wide range of the three components, even under relatively gentle vortex mixing. Interestingly, the prepared W/O emulsions are found to be nearly genuine or quasi Newtonian fluid with low viscosity when water content is in the range from 0 to 36 wt % for the fixed weight ratio of AIM/D(5) = 6/4. This is a good piece of evidence that AIM forms the independent third phase, where the Newtonian shear occurs at the D(5)/AIM interface. The presence of AIM as third phase has also been confirmed by fluorescence probe method with confocal laser scanning microscopy. As such, AIM can activate interfaces by the least amount to cover interfaces as an independent third phase, and hence, this provides a new concept achieving a precise control of interfacial properties.


Subject(s)
Emulsions/chemistry , Peptides/chemistry , Polymers/chemistry , Silicones/chemistry , Water/chemistry , Microscopy, Confocal , Models, Theoretical
19.
J Colloid Interface Sci ; 335(1): 70-6, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19419730

ABSTRACT

We report on the fabrication of hybrid organic-inorganic mesostructured materials from aqueous solutions of a series of poly(oxyethylene) cholesteryl ethers (ChEO(n), where n is the number of oxyethylene units) with a water-soluble silica precursor, tetra(2-hydroxyethyl) orthosilicate (THEOS) at a neutral pH condition. ChEO10 and ChEO15 form rectangular and 2D-hexagonal mesostructures, respectively, as detected by Small-Angle X-ray Scattering (SAXS) measurements. On the other hand, disordered structures (showing nevertheless a correlation length) are observed with longer hydrophilic chain surfactants, such as ChEO20, ChEO24 and ChEO30. Highly ordered mesostructures cannot be obtained at neutral pH when THEOS is substituted with a conventional silica precursor, tetraethyl orthosilicate (TEOS). The structural evolution from initial disordered micellar solutions is dependent on both surfactant and THEOS concentrations. It is also found that the silica mesostructures obtained from ChEO10 and ChEO15 templates are the same as those of the liquid crystalline phases formed in aqueous mixtures of the corresponding surfactant.


Subject(s)
Cholesterol/analogs & derivatives , Polyethylene Glycols/chemistry , Silicates/chemistry , Silicon Dioxide/chemical synthesis , Cholesterol/chemical synthesis , Cholesterol/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Molecular Structure , Polyethylene Glycols/chemical synthesis , Scattering, Small Angle , Silicates/chemical synthesis , Silicon Dioxide/chemistry , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Water/chemistry , X-Ray Diffraction
20.
J Oleo Sci ; 57(11): 629-37, 2008.
Article in English | MEDLINE | ID: mdl-18838836

ABSTRACT

Hexagonal-structured self-assemblies of nanocrystalline (anatase) titania templated by cetyltrimethylammonium bromide (C(16)H(33)N(CH(3))(3)Br; CTAB) (Hex-ncTiO(2)/CTAB Nanoskeleton) were formed after mixing of aqueous solutions containing CTAB spherical micelles and titanium oxysulfate acid hydrate (TiOSO(4).xH(2)SO(4).xH(2)O) as a titania precursor in the absence of any other additives. Formation mechanism of the Hex-ncTiO(2)/CTAB Nanoskeleton was examined in terms of the reaction temperature, titania precursor/CTAB mixing ratio, surfactant type, electrostatic interaction, micelle formation and molecular component. We found that crystal growth of crystalline (anatase) titania (polymorphic crystallization) was promoted with higher temperature and lower titania precursor content in aqueous solutions. In addition, we revealed that the crystalline (anatase) titania was formed in polycation, poly(allylamine hydrochloride ([CH(2)CH(CH(2)NH(2))HCl](n); PAH), and formamide (HCONH(2)) solutions. On the other hand, no titania formation was observed in anionic systems such as sodium dodecyl sulfate (CH(3)(CH(2))(11)OSO(3)Na; SDS) and poly(sodium 4-styrenesulfonate ([C(8)H(7)SO(3)Na](n); PSSS). This indicates that hydrolysis reaction of the titania precursor is initiated by not only cations but also nitrogen atoms in molecules and polymers. Hexagonally structure was formed in only cationic surfactant micellar solutions but not in polycation solutions and formamide.


Subject(s)
Cetrimonium Compounds/chemistry , Micelles , Nanoparticles/chemistry , Titanium/chemistry , Cetrimonium , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...