Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 691: 149258, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38029541

ABSTRACT

Mast cells (MCs) possess numerous potent inflammatory mediators and undergo differential regulation in response to antigen (Ag) stimulation. Among the regulatory systems governing secretory responses, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play a pivotal role in facilitating granule-plasma membrane fusion and subsequent secretion. Our previous investigation documented the involvement of vesicle-associated membrane protein 3 (VAMP3) in regulating cytokine secretions in RBL-2H3 cells, a model for MC IgE-mediated responses. In addition to VAMP3, VAMP7 is expressed in MCs, but its functional role remains elusive. The present study seeks to explore VAMP7-specific regulatory mechanisms in MCs, shedding light on one of the mechanisms governing heterogeneous secretory responses in these cells. Murine bone marrow-derived mast cells (BMMCs) were examined to analyze the subcellular distribution of inflammatory mediators, specifically TNFα, CCL2, and histamine, and VAMPs (i.e., VAMP3, VAMP7, and VAMP8). Immunocytochemistry and the transient expression of fluorescent protein-conjugated target proteins were used to discern the distribution of various inflammatory mediators and VAMP7 through confocal laser scanning microscopy. Each inflammatory mediator (TNFα, CCL2, and histamine) was found in secretory granules of different sizes within BMMCs. VAMP7 exhibited a distinct distribution compared to VAMP3 in these granules. Notably, an overlapping distribution was observed between VAMP7 and CCL2, but not between VAMP7 and TNFα or VAMP7 and histamine. This suggests that CCL2 resides within VAMP7-expressing granules and is subject to VAMP7-dependent secretory regulation. Consistently, BMMCs with VAMP7 knockdown showed markedly reduced CCL2 secretion after Ag stimulation. These observations underscore the heterogeneity of MC secretory responses and unveil a novel VAMP7-dependent CCL2 secretion mechanism within MCs. This discovery might pave the way for the development of more precise therapeutic strategies to modulate MC secretion in allergic conditions.


Subject(s)
Histamine , Mast Cells , Mice , Animals , Vesicle-Associated Membrane Protein 3/genetics , Vesicle-Associated Membrane Protein 3/metabolism , Histamine/metabolism , Mast Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Secretory Vesicles/metabolism , SNARE Proteins/metabolism
2.
Front Immunol ; 13: 885868, 2022.
Article in English | MEDLINE | ID: mdl-35990647

ABSTRACT

Mast cells (MCs) are inflammatory cells involved in allergic reactions. Crosslinking of the high-affinity receptor for IgE (FcϵRI) with multivalent antigens (Ags) induces secretory responses to release various inflammatory mediators. These responses are largely mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Vesicle-associated membrane protein 3 (VAMP3) is a vesicular-SNARE that interacts with targeted SNARE counterparts, driving the fusion of MC secretory granules with the membrane and affecting subsequent assembly of the plasma membrane. However, the role of VAMP3 in FcϵRI-mediated MC function remains unclear. In this study, we comprehensively examined the role of VAMP3 and the molecular mechanisms underlying VAMP3-mediated MC function upon FcϵRI activation. VAMP3 shRNA transduction considerably decreased VAMP3 expression compared with non-target shRNA-transduced (NT) cells. VAMP3 knockdown (KD) cells were sensitized with an anti-DNP IgE antibody and subsequently stimulated with Ag. The VAMP3 KD cells showed decreased degranulation response upon Ag stimulation. Next, we observed intracellular granule formation using CD63-GFP fluorescence. The VAMP3 KD cells were considerably impaired in their capacity to increase the size of granules when compared to NT cells, suggesting that VAMP3 mediates granule fusion and therefore promotes granule exocytosis in MCs. Analysis of FcϵRI-mediated activation of signaling events (FcϵRI, Lyn, Syk, and intracellular Ca2+ response) revealed that signaling molecule activation was enhanced in VAMP3 KD cells. We also found that FcϵRI expression on the cell surface decreased considerably in VAMP3 KD cells, although the amount of total protein did not vary. VAMP3 KD cells also showed dysregulation of plasma membrane homeostasis, such as endocytosis and lipid raft formation. The difference in the plasma membrane environment in VAMP3 KD cells might affect FcϵRI membrane dynamics and the subsequent signalosome formation. Furthermore, IgE/Ag-mediated secretion of TNF-α and IL-6 is oppositely regulated in the absence of VAMP3, which appears to be attributed to both the activation of FcϵRI and defects in VAMP3-mediated membrane fusion. Taken together, these results suggest that enhanced FcϵRI-mediated signal transduction in VAMP3 KD cells occurs due to the disruption of plasma membrane homeostasis. Hence, a multifunctional regulation of VAMP3 is involved in complex secretory responses in MCs.


Subject(s)
Exocytosis , Receptors, IgE , Immunoglobulin E , RNA, Small Interfering , Receptors, IgE/metabolism , SNARE Proteins , Vesicle-Associated Membrane Protein 3/genetics , Vesicle-Associated Membrane Protein 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...