Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 42(Database issue): D320-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24178034

ABSTRACT

IDEAL (Intrinsically Disordered proteins with Extensive Annotations and Literature, http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/) is a collection of intrinsically disordered proteins (IDPs) that cannot adopt stable globular structures under physiological conditions. Since its previous publication in 2012, the number of entries in IDEAL has almost tripled (120 to 340). In addition to the increase in quantity, the quality of IDEAL has been significantly improved. The new IDEAL incorporates the interactions of IDPs and their binding partners more explicitly, and illustrates the protein-protein interaction (PPI) networks and the structures of protein complexes. Redundant experimental data are arranged based on the clustering of Protein Data Bank entries, and similar sequences with the same binding mode are grouped. As a result, the new IDEAL presents more concise and informative experimental data. Nuclear magnetic resonance (NMR) disorder is annotated in a systematic manner, by identifying the regions with large deviations among the NMR models. The ordered/disordered and new domain predictions by DICHOT are available, as well as the domain assignments by HMMER. Some examples of the PPI networks and the highly deviated regions derived from NMR models will be described, together with other advances. These enhancements will facilitate deeper understanding of IDPs, in terms of their flexibility, plasticity and promiscuity.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Interaction Maps , Internet , Nuclear Magnetic Resonance, Biomolecular
2.
PLoS One ; 7(11): e50445, 2012.
Article in English | MEDLINE | ID: mdl-23189203

ABSTRACT

The relationship between sequence polymorphisms and human disease has been studied mostly in terms of effects of single nucleotide polymorphisms (SNPs) leading to single amino acid substitutions that change protein structure and function. However, less attention has been paid to more drastic sequence polymorphisms which cause premature termination of a protein's sequence or large changes, insertions, or deletions in the sequence. We have analyzed a large set (n = 512) of insertions and deletions (indels) and single nucleotide polymorphisms causing premature termination of translation in disease-related genes. Prediction of protein-destabilization effects was performed by graphical presentation of the locations of polymorphisms in the protein structure, using the Genomes TO Protein (GTOP) database, and manual annotation with a set of specific criteria. Protein-destabilization was predicted for 44.4% of the nonsense SNPs, 32.4% of the frameshifting indels, and 9.1% of the non-frameshifting indels. A prediction of nonsense-mediated decay allowed to infer which truncated proteins would actually be translated as defective proteins. These cases included the proteins linked to diseases inherited dominantly, suggesting a relation between these diseases and toxic aggregation. Our approach would be useful in identifying potentially aggregation-inducing polymorphisms that may have pathological effects.


Subject(s)
Polymorphism, Single Nucleotide , Proteins/chemistry , Proteins/genetics , Databases, Protein , Genetic Predisposition to Disease , Humans , Hydrophobic and Hydrophilic Interactions , INDEL Mutation , Models, Molecular , Protein Conformation , Protein Stability
3.
Mol Biosyst ; 8(1): 247-55, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21866296

ABSTRACT

Proteins in general consist not only of globular structural domains (SDs), but also of intrinsically disordered regions (IDRs), i.e. those that do not assume unique three-dimensional structures by themselves. Although IDRs are especially prevalent in eukaryotic proteins, the functions are mostly unknown. To elucidate the functions of IDRs, we first divided eukaryotic proteins into subcellular localizations, identified IDRs by the DICHOT system that accurately divides entire proteins into SDs and IDRs, and examined charge and hydropathy characteristics. On average, mitochondrial proteins have IDRs more positively charged than SDs. Comparison of mitochondrial proteins with orthologous prokaryotic proteins showed that mitochondrial proteins tend to have segments attached at both N and C termini, high fractions of which are IDRs. Segments added to the N-terminus of mitochondrial proteins contain not only signal sequences but also mature proteins and exhibit a positive charge gradient, with the magnitude increasing toward the N-terminus. This finding is consistent with the notion that positively charged residues are added to the N-terminus of proteobacterial proteins so that the extended proteins can be chromosomally encoded and efficiently transported to mitochondria after translation. By contrast, nuclear proteins generally have positively charged SDs and negatively charged IDRs. Among nuclear proteins, DNA-binding proteins have enhanced charge tendencies. We propose that SDs in nuclear proteins tend to be positively charged because of the need to bind to negatively charged nucleotides, while IDRs tend to be negatively charged to interact with other proteins or other regions of the same proteins to avoid premature proteasomal degradation.


Subject(s)
Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Folding , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
4.
Nucleic Acids Res ; 40(Database issue): D507-11, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22067451

ABSTRACT

IDEAL, Intrinsically Disordered proteins with Extensive Annotations and Literature (http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/), is a collection of knowledge on experimentally verified intrinsically disordered proteins. IDEAL contains manual annotations by curators on intrinsically disordered regions, interaction regions to other molecules, post-translational modification sites, references and structural domain assignments. In particular, IDEAL explicitly describes protean segments that can be transformed from a disordered state to an ordered state. Since in most cases they can act as molecular recognition elements upon binding of partner proteins, IDEAL provides a data resource for functional regions of intrinsically disordered proteins. The information in IDEAL is provided on a user-friendly graphical view and in a computer-friendly XML format.


Subject(s)
Databases, Protein , Protein Conformation , Molecular Sequence Annotation , Protein Processing, Post-Translational , Proteins/chemistry , User-Computer Interface
5.
Nucleic Acids Res ; 37(Database issue): D333-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18987007

ABSTRACT

The Genomes TO Protein Structures and Functions (GTOP) database (http://spock.genes.nig.ac.jp/~genome/gtop.html) freely provides an extensive collection of information on protein structures and functions obtained by application of various computational tools to the amino acid sequences of entirely sequenced genomes. GTOP contains annotations of 3D structures, protein families, functions, and other useful data of a protein of interest in user-friendly ways to give a deep insight into the protein structure. From the initial 1999 version, GTOP has been continually updated to reap the fruits of genome projects and augmented to supply novel information, in particular intrinsically disordered regions. As intrinsically disordered regions constitute a considerable fraction of proteins and often play crucial roles especially in eukaryotes, their assignments give important additional clues to the functionality of proteins. Additionally, we have incorporated the following features into GTOP: a platform independent structural viewer, results of HMM searches against SCOP and Pfam, secondary structure predictions, color display of exon boundaries in eukaryotic proteins, assignments of gene ontology terms, search tools, and master files.


Subject(s)
Databases, Protein , Protein Conformation , Proteins/genetics , Exons , Genomics , Proteins/chemistry , Proteins/physiology , Sequence Analysis, Protein , Software
6.
J Bacteriol ; 190(5): 1762-72, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18065537

ABSTRACT

Cyanobacteria and their phages are significant microbial components of the freshwater and marine environments. We identified a lytic phage, Ma-LMM01, infecting Microcystis aeruginosa, a cyanobacterium that forms toxic blooms on the surfaces of freshwater lakes. Here, we describe the first sequenced freshwater cyanomyovirus genome of Ma-LMM01. The linear, circularly permuted, and terminally redundant genome has 162,109 bp and contains 184 predicted protein-coding genes and two tRNA genes. The genome exhibits no colinearity with previously sequenced genomes of cyanomyoviruses or other Myoviridae. The majority of the predicted genes have no detectable homologues in the databases. These findings indicate that Ma-LMM01 is a member of a new lineage of the Myoviridae family. The genome lacks homologues for the photosynthetic genes that are prevalent in marine cyanophages. However, it has a homologue of nblA, which is essential for the degradation of the major cyanobacteria light-harvesting complex, the phycobilisomes. The genome codes for a site-specific recombinase and two prophage antirepressors, suggesting that it has the capacity to integrate into the host genome. Ma-LMM01 possesses six genes, including three coding for transposases, that are highly similar to homologues found in cyanobacteria, suggesting that recent gene transfers have occurred between Ma-LMM01 and its host. We propose that the Ma-LMM01 NblA homologue possibly reduces the absorption of excess light energy and confers benefits to the phage living in surface waters. This phage genome study suggests that light is central in the phage-cyanobacterium relationships where the viruses use diverse genetic strategies to control their host's photosynthesis.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Microcystis/virology , Amino Acid Sequence , Bacteriophages/growth & development , Computational Biology , Databases, Genetic , Fresh Water/microbiology , Fresh Water/virology , Host-Pathogen Interactions , Models, Genetic , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...