Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Opt Express ; 26(16): 20603-20613, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119369

ABSTRACT

To meet the ever-increasing bandwidth demands in the future broadband wireless networks, the millimeter-wave (mm-wave) frequency region is being actively perused, owing to its broad bandwidth and high frequencies. In this paper, a photonic mm-wave system is proposed and experimentally demonstrated based on the injection locking of a direct multilevel modulated laser to a spacing-tunable two-tone light. Since the mm-wave frequency of the generated signal is locked to the frequency spacing of the injected two-tone light, it shows better frequency stabilization than the schemes based on two free-running lasers. Moreover, by simply tuning the tone spacing, the mm-wave frequency could be easily re-configured, offering flexibility in the mm-wave signal generation. Instead of using complex and expensive optical modulators, the multilevel modulation on the mm-wave data carrier is implemented through the direct multilevel modulation of a laser and the injection locking. A 28 Gbps four-level pulse amplitude modulation (PAM4) is realized by biasing a 10 G-class laser at a current far from the threshold, providing a cost-effective and simple mm-wave generation scheme. In the experiment, a photonic approach to generating 28 Gbps PAM4 60 GHz/80 GHz mm-wave signals is experimentally demonstrated. A power penalty of less than 0.2 dB is observed for the filtered-out PAM4 signals with respect to the original PAM4. Besides, an ultra-low phase noise of up to -98 dBc/Hz is obtained for the mm-wave carriers after the injection locking. The proposed scheme possesses the flexibility and frequency stability of the mm-wave frequency, and also has low cost and implementation complexity.

2.
Opt Express ; 26(2): 1488-1496, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29402022

ABSTRACT

As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.

3.
Opt Lett ; 42(21): 4462-4465, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088188

ABSTRACT

We propose multiple-frequency-spaced flat optical comb generation using an electro-optic (EO) multiple-parallel phase modulator. We formulate and clarify the operating conditions in which we can generate optical combs adding the two important functionalities of spectral shaping: (1) multiplication of frequency spacing and (2) spectral flattening. The frequency spacing of the generated comb is enhanced much higher than the EO modulation bandwidth. The spectral shaping is achieved fully through the EO modulation process without relying on any optical filters. This filter-less configuration is advantageous for flexible tuning of wavelength and frequency spacing of the generated combs. The concept is numerically verified, focusing on N×25-GHz-spaced comb generation.

4.
Opt Express ; 24(20): 22573-22580, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828328

ABSTRACT

Recently the ever-growing demand for dynamic and high-capacity services in optical networks has resulted in new challenges that require improved network agility and flexibility in order for network resources to become more "consumable" and dynamic, or elastic, in response to requests from higher network layers. Flexible and scalable wavelength conversion or multicast is one of the most important technologies needed for developing agility in the physical layer. This paper will investigate how, using a reconfigurable coherent multi-carrier as a pump, the multicast scalability and the flexibility in wavelength allocation of the converted signals can be effectively improved. Moreover, the coherence in the multiple carriers prevents the phase noise transformation from the local pump to the converted signals, which is imperative for the phase-noise-sensitive multi-level single- or multi-carrier modulated signal. To verify the feasibility of the proposed scheme, we experimentally demonstrate the wavelength multicast of coherent optical orthogonal frequency division multiplexing (CO-OFDM) signals using a reconfigurable coherent multi-carrier pump, showing flexibility in wavelength allocation, scalability in multicast, and tolerance against pump phase noise. Less than 0.5 dB and 1.8 dB power penalties at a bit-error rate (BER) of 10-3 are obtained for the converted CO-OFDM-quadrature phase-shift keying (QPSK) and CO-OFDM-16-ary quadrature amplitude modulation (16QAM) signals, respectively, even when using a distributed feedback laser (DFB) as a pump source. In contrast, with a free-running pumping scheme, the phase noise from DFB pumps severely deteriorates the CO-OFDM signals, resulting in a visible error-floor at a BER of 10-2 in the converted CO-OFDM-16QAM signals.

5.
Opt Express ; 24(4): 3702-12, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907026

ABSTRACT

An important challenge for implementing optical signal processing functions such as wavelength conversion or wavelength data exchange (WDE) is to avoid the introduction of linear and nonlinear phase noise in the subsystem. This is particularly important for phase noise sensitive, high-order quadrature-amplitude modulation (QAM) signals. In this paper, we propose and experimentally demonstrate an optical data exchange scheme through cascaded 2nd-order nonlinearities in periodically-poled lithium niobate (PPLN) waveguides using coherent pumping. The proposed coherent pumping scheme enables noise from the coherent pumps to be cancelled out in the swapped data after WDE, even with broad linewidth distributed feedback (DFB) pump lasers. Hence, this scheme allows phase noise tolerant processing functions, enabling the low-cost implementation of WDE for high-order QAM signals. We experimentally demonstrate WDEs between 10-Gbaud 4QAM (4QAM) signal and 12.5-Gbaud 4QAM (16QAM) signal with 3.5-MHz linewidth DFB pump lasers and 50-GHz channel spacing. Error-free operation is observed for the swapped QAM signals with coherent DFB pumping whilst use of free-running DFB pumps leads to visible error floors and unrecoverable phase errors. The phase noise cancellation in the coherent pump scheme is further confirmed by study of the recovered carrier phase of the converted signals. In addition to pump phase noise, the influence of crosstalk caused by the finite extinction ratio in WDE is also experimentally investigated for the swapped QAM signals.

6.
Opt Express ; 23(16): 21366-74, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367984

ABSTRACT

In dynamic optical networking scenarios, it is desirable that the optical transmitter chooses the most suitable modulation format in order to achieve optimal transmission performance. Owing to the ability of switching among different modulation formats, flexible optical transmitters based on reconfigurable optical devices are becoming a key component for the implementation of future flexible optical networks. In this paper, we experimentally demonstrate a flexible 8-ary transmitter to achieve adaptive switching between 8-ary phase-shift keying (8PSK) and circular 8-ary quadrature-amplitude modulation (8QAM) through reconfiguration of two cascaded in-phase/quadrature (IQ) modulators with different driving signals and biasing conditions. An arbitrary binary quadrature-amplitude modulation (2QAM) with constant or non-constant amplitude is proposed and experimentally demonstrated using an IQ modulator. Then, optical 8PSK or 8QAM modulation formats are successfully synthesized when a standard squared QPSK modulator is cascaded with a constant-amplitude or non-constant-amplitude 2QAM, respectively.

7.
Opt Express ; 23(19): 24140-51, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406620

ABSTRACT

We propose a new optical coherent detection scheme with a "two-tone" local light, which is also in principle insensitive to the laser phase fluctuation and is assisted by the digital signal processing technique for radio-over-fiber (RoF) systems. The main feature of our proposal is that the frequency separation of the two-tone local light is different from that of the RoF signal, which is called "offset-frequency-spaced" in this paper. First, we explain the principle of our new proposal and experimentally demonstrate the data recovery. Then, the influence of the frequency detuning between photo-detected modulated and unmodulated signals is discussed. Moreover, the transmission performance with an error vector magnitude (EVM) is evaluated for the optical coherent detection of a 10-Gbaud quadrature-phase-shift-keying RoF signal after a 20-km-long standard single-mode fiber transmission.

8.
Sci Rep ; 4: 7468, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524646

ABSTRACT

Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

9.
Opt Express ; 22(5): 5067-75, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663846

ABSTRACT

Optical wavelength conversion (OWC) is expected to be a desirable function in future optical transparent networks. Since high-order quadrature amplitude modulation (QAM) is more sensitive to the phase noise, in the OWC of high-order QAM signals, it is crucial to suppress the extra noise introduced in the OWC subsystem, especially for the scenario with multiple cascaded OWCs. Here, we propose and experimentally demonstrate a pump-linewidth-tolerant OWC scheme suitable for high-order QAM signals using coherent two-tone pumps. Using 3.5-MHz-linewidth distributed feedback (DFB) lasers as pump sources, our scheme enables wavelength conversion of both 16QAM and 64QAM signals with negligible power penalty, in a periodically-poled Lithium Niobate (PPLN) waveguide based OWC. We also demonstrate the performance of pump phase noise cancellation, showing that such coherent two-tone pump schemes can eliminate the need for ultra-narrow linewidth pump lasers and enable practical implementation of low-cost OWC in future dynamic optical networks.

10.
Opt Express ; 22(1): 15-22, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24514960

ABSTRACT

All-optical wavelength conversion (AOWC) plays an important role in the future transparent optical networks, in order to enhance the re-configurability and non-blocking capacity. On the other hand, high-order quadrature amplitude modulations (QAMs) have been extensively studied for achieving the high-speed and high-spectral-efficiency optical transmission. Since high-order QAMs are more sensitive to phase and amplitude noise, to implement an AOWC sub-system suitable for high-order QAM signals with minimized power penalty, it is important to optimize the operation conditions in order to avoid extra nonlinear distortions co-existed in the AOWC process. Our experimental results show that, constellation monitoring provides a more intuitive and accurate approach to monitor the converted high-order QAM signals, especially in presence of nonlinear phase noise such as self-phase modulation (SPM). We experimentally demonstrate an AOWC of 64QAM signal through four-wave mixing (FWM) in highly-nonlinear (HNLF). The performance of the AOWC is optimized through the constellation monitoring of the converted signal, achieving a negligible power penalty (<0.3 dB at BER of 10(-3)) for 60-Gbps 64QAM after conversion.

11.
Opt Express ; 22(1): 773-81, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24515037

ABSTRACT

In this paper, we propose and investigate an optical multiplexing technique, called orthogonal time-frequency domain multiplexing (OTFDM) with multilevel signaling, that enables ultrafast, high-spectral-efficiency transmission. On the transmitter side, optical rectangular combs generated from electro-optic modulators are data modulated and multiplexed into the time-frequency domain. On the receiver side, the OTFDM signal is demultiplexed and coherently demodulated by coherent matched detection in which multi-frequency homodyne mixing with a locally generated comb down-converts a target OTFDM tributary channel into baseband frequencies. These multiplexing and demultiplexing processes are fully performed in the optical domain using optoelectronic devices, without the use of fast Fourier transform circuits or optical channel selection filters. It is analytically and numerically proved that multilevel signals such as nPSK and nQAM can be OTFDM-multiplexed and demultiplexed while retaining orthogonality between tributaries. The spectral efficiency of this method reaches as high as 1 Baud/Hz per single polarization, i.e., the Nyquist limit, enabling high-bandwidth operation unrestricted by an electronic response in the transmitter or receiver.

12.
Opt Express ; 22(24): 29413-23, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25606876

ABSTRACT

In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.


Subject(s)
Amplifiers, Electronic , Electronics , Optical Phenomena , Quantum Dots/chemistry , Semiconductors , Signal Processing, Computer-Assisted , Logic , Wavelet Analysis
13.
Opt Express ; 21(16): 18602-10, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938777

ABSTRACT

This paper presents multi-tone parallel coherent matched detection that orthogonally detects superchannels without crosstalk between neighboring channels. The receiver consists of multiple sets of multi-tone coherent matched detector employed in parallel. In each detector, the received superchannels signal is homodyne mixed in multi frequency with locally generated multi-tone optical frequency comb; detected is a signal set that has the amplitude and phase exactly matched with the local comb. By launching orthogonal sets of local comb to the multiple parallel coherent matched detectors, the received superchannels are orthogonally downconverted to the baseband frequencies keeping the amplitude and phase information of all channels included. With an aid of n × n transform matrix, all channels are separately recovered from the downconverted signal sets. The system does not rely on any optical filters for channel demultiplexing and separation, with increased flexibility in wavelength arrangement. In addition, the parallel configuration equivalently enhance the bandwidth of the coherent matched detector keeping the speed in each tributary channel as high as possible. In this paper, it is experimentally demonstrated that even-odd interleaved 23 × 20-Gb/s QPSK superchannels are orthogonally demultiplexed and detected by two-tone coherent matched detection.

14.
Opt Express ; 21(5): 6213-23, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482190

ABSTRACT

In order to adapt to the dynamics in the future optical networks, we propose a flexible high-order QAM transmitter using a tandem in-phase/quadrature (IQ) modulators to synthesize different high-order quadrature amplitude modulation (QAM) formats, such as 16QAM, 32 or 36QAM and 64QAM. To generate high-order QAMs, an offset-QAM is firstly generated using an IQ modulator driven by electronics with reduced modulation-level, and then mapped to other quadrants through another following IQ modulator configured as a standard quadrature phase-shift keying (QPSK) modulator. All of the embedded sub-Mach-Zehnder modulators are operated in push-pull configurations to avoid introducing excess phase chirp. In contrast with the schemes based on a single IQ modulator driven by multilevel electronics or a highly-integrated parallel modulator, by deploying commercially-available optical modulators and driving electronics with reduced modulation-level, the transmitter complexity in optics and electronics is well-balanced. In the case of generating optical 64QAM, different from another tandem scheme deploying dual-drive IQ modulator driven by independent four binary streams, less phase chirp is observed in our proposed scheme, and comparable implementation penalty is obtained even without applying additional specific compensation algorithm in the coherent receiver. Moreover, thanks to the tandem structure and the deployment of QPSK modulator, the obtained high-order QAM is naturally differentially coded, which is helpful to solve the phase ambiguity at coherent receiver. We experimentally demonstrate the generations of these high-order QAMs including 16QAM, 32/36QAM and 64QAM, and confirm the error-free operations with comparable BER performance to the "electrical" approach based on a single IQ modulator.

15.
Opt Express ; 19(19): 18479-85, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21935216

ABSTRACT

Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.

16.
Opt Express ; 19(6): 5596-601, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445199

ABSTRACT

We propose and demonstrate a reconfigurable multilevel transmitter using a monolithically-integrated quad Mach-Zehnder in-phase/quadrature (QMZ-IQ) modulator with binary driving electronics. Different from previous parallel-integrated quadrature amplitude modulation (QAM) transmitter solutions, only one electrode is required to adjust the relative phase offset among embedded sub-Mach-Zehnder modulators in the proposed IQ superstructure. By feeding different RF driving electronics and operating the integrated modulator as different bias conditions, different advanced multilevel modulation formats, such as QAM and 8-ary phase-shift keying (8-PSK), could be synthesized. In this paper, a 40-Gb/s 16-QAM and a 30-Gb/s 8-PSK are generated using the proposed multilevel transmitter, respectively. Offline digital processing is employed for bit-error rates estimation and constellation reconstruction.

17.
Opt Express ; 19(26): B56-63, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274070

ABSTRACT

The generation of a 40-Gb/s 16-QAM radio-over-fiber (RoF) signal and its demodulation of the wireless signal transmitted over free space of 30 mm in W-band (75-110 GHz) is demonstrated. The 16-QAM signal is generated by a coherent polarization synthesis method using a dual-polarization QPSK modulator. A combination of the simple RoF generation and the versatile digital receiver technique is suitable for the proposed coherent optical/wireless seamless network.

18.
Opt Lett ; 34(14): 2144-6, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19823529

ABSTRACT

We propose and demonstrate an optical minimum-shift-keying (MSK) transmitter using a single-quad Mach-Zehnder (MZ) in-phase and quadrature modulator, where four sub-Mach-Zehnder modulators are monolithically integrated on a main MZ superstructure. Using the proposed transmitter, a MSK signal at bit rate of B could be successfully generated by orthogonally superposing two low-speed (B/2) carrier-suppressed return-to-zero differential phase-shift-keying streams with a relative time offset, 1/B. MSK signals at bit rate of 20 and 80 Gbits/s were successfully generated using the proposed MSK transmitter. A continuous changed phase trajectory of the obtained MSK was confirmed using a complex spectrum analyzer. The filtering tolerance of the MSK was also characterized using a bandwidth-variable tunable filter.

19.
Opt Lett ; 34(15): 2297-9, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19649076

ABSTRACT

The broadband wavelength tunability of femtosecond pulse generation using a Mach-Zehnder-modulator-based flat-comb generator (MZ-FCG) and a dispersion-flattened dispersion-decreasing fiber (DF-DDF) was demonstrated. Near-Fourier-transform-limit picosecond pulses generated from the MZ-FCG were compressed into femtosecond pulses by adiabatic soliton compression. By tuning the wavelength of the input cw light, 200 fs, 10 GHz pulses were generated in the wavelength range of 1,535 to 1,570 nm. Such wide-range wavelength tunability was realized by both the independence of a comb-flattening condition from the inputted wavelength and the dispersion flatness of the DF-DDF.

20.
Opt Lett ; 34(8): 1192-4, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19370114

ABSTRACT

We demonstrate tunable all-optical pulse compression and stretching via doublet Brillouin gain lines in an optical fiber. Tunable pulse compression or a stretching ratio of 1.47-0.43 accompanying a time delay is achieved by controlling the separation between two gain lines, for an input pulse train with a 40 ns width and a repetition rate of 5 MHz, in a 4 km silica fiber with a fixed pump power of 88.1 mW. The limitation of this pulse compressor or stretcher is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...