Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(13): e23775, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967223

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.


Subject(s)
Colitis , Dextran Sulfate , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerases , Animals , Female , Humans , Male , Mice , Colitis/genetics , Colitis/chemically induced , Colitis/pathology , Colon/pathology , Colon/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/metabolism , Mice, Knockout , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/deficiency
2.
J Biol Chem ; 298(5): 101892, 2022 05.
Article in English | MEDLINE | ID: mdl-35378130

ABSTRACT

Bordetella pertussis is the causative agent of whooping cough, a highly contagious respiratory disease. Pertussis toxin (PT), a major virulence factor secreted by B. pertussis, is an AB5-type protein complex topologically related to cholera toxin. The PT protein complex is internalized by host cells and follows a retrograde trafficking route to the endoplasmic reticulum, where it subsequently dissociates. The released enzymatic S1 subunit is then translocated from the endoplasmic reticulum into the cytosol and subsequently ADP-ribosylates the inhibitory alpha-subunits (Gαi) of heterotrimeric G proteins, thus promoting dysregulation of G protein-coupled receptor signaling. However, the mechanistic details of the ADP-ribosylation activity of PT are not well understood. Here, we describe crystal structures of the S1 subunit in complex with nicotinamide adenine dinucleotide (NAD+), with NAD+ hydrolysis products ADP-ribose and nicotinamide, with NAD+ analog PJ34, and with a novel NAD+ analog formed upon S1 subunit crystallization with 3-amino benzamide and NAD+, which we name benzamide amino adenine dinucleotide. These crystal structures provide unprecedented insights into pre- and post-NAD+ hydrolysis steps of the ADP-ribosyltransferase activity of PT. We propose that these data may aid in rational drug design approaches and further development of PT-specific small-molecule inhibitors.


Subject(s)
NAD , Pertussis Toxin/chemistry , Virulence Factors, Bordetella/chemistry , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Bordetella pertussis , Cytosol/metabolism , NAD/metabolism
3.
ACS Infect Dis ; 8(3): 433-456, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35099182

ABSTRACT

The paradigm of antivirulence therapy dictates that bacterial pathogens are specifically disarmed but not killed by neutralizing their virulence factors. Clearance of the invading pathogen by the immune system is promoted. As compared to antibiotics, the pathogen-selective antivirulence drugs hold promise to minimize collateral damage to the beneficial microbiome. Also, selective pressure for resistance is expected to be lower because bacterial viability is not directly affected. Antivirulence drugs are being developed for stand-alone prophylactic and therapeutic treatments but also for combinatorial use with antibiotics. This Review focuses on drug modalities that target bacterial exotoxins after the secretion or release-upon-lysis. Exotoxins have a significant and sometimes the primary role as the disease-causing virulence factor, and thereby they are attractive targets for drug development. We describe the key pre-clinical and clinical trial data that have led to the approval of currently used exotoxin-targeted drugs, namely the monoclonal antibodies bezlotoxumab (toxin B/TcdB, Clostridioides difficile), raxibacumab (anthrax toxin, Bacillus anthracis), and obiltoxaximab (anthrax toxin, Bacillus anthracis), but also to challenges with some of the promising leads. We also highlight the recent developments in pre-clinical research sector to develop exotoxin-targeted drug modalities, i.e., monoclonal antibodies, antibody fragments, antibody mimetics, receptor analogs, neutralizing scaffolds, dominant-negative mutants, and small molecules. We describe how these exotoxin-targeted drug modalities work with high-resolution structural knowledge and highlight their advantages and disadvantages as antibiotic alternatives.


Subject(s)
Bacillus anthracis , Bacterial Toxins , Clostridioides difficile , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Exotoxins
4.
Sci Rep ; 11(1): 5429, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686161

ABSTRACT

Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


Subject(s)
Bordetella pertussis/enzymology , Drug Delivery Systems , Enzyme Inhibitors/pharmacology , Epithelial Cells/metabolism , Leukocytosis , Molecular Chaperones , Pertussis Toxin/toxicity , Animals , Bordetella pertussis/metabolism , Bordetella pertussis/pathogenicity , CHO Cells , Cricetulus , Epithelial Cells/microbiology , HEK293 Cells , Humans , Leukocytosis/chemically induced , Leukocytosis/drug therapy , Leukocytosis/metabolism , Mice , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...