Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Sci ; 154(2): 52-60, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246728

ABSTRACT

Many glaucoma treatments focus on lowering intraocular pressure (IOP), with novel drugs continuing to be developed. One widely used model involves raising IOP by applying a laser to the trabecular iris angle (TIA) of cynomolgus monkeys to damage the trabecular meshwork. This model, however, presents challenges such as varying IOP values, potential trabecular meshwork damage, and risk of animal distress. This study investigated whether animals with naturally high IOP (>25 mmHg) could be used to effectively evaluate IOP-lowering drugs, thereby possibly replacing laser-induced models. Relationships between TIA size, IOP, and pupil diameter were also examined. Three representative IOP-lowering drugs (latanoprost, timolol, ripasudil) were administered, followed by multiple IOP measurements and assessment of corneal thickness, TIA, and pupil diameter via anterior segment optical coherence tomography (AS-OCT). There was a positive correlation was noted between IOP and corneal thickness before instillation, and a negative correlation between IOP and TIA before instillation. Our findings suggest animals with naturally high IOP could be beneficial for glaucoma research and development as a viable replacement for the laser-induced model and that measuring TIA using AS-OCT along with IOP yields a more detailed evaluation.


Subject(s)
Glaucoma , Intraocular Pressure , Animals , Macaca fascicularis , Timolol/pharmacology , Trabecular Meshwork
2.
Talanta ; 251: 123796, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35952503

ABSTRACT

Pi-class glutathione S-transferase (GSTP1) is a detoxification enzyme that is highly expressed in various types of cancer cells and is a promising target for cancer imaging and therapy. Ps-TAc, an acetylated derivative of the GSTP1-specific fluorogenic substrate Ps-TG, is attracting attention as an effective GSTP1 fluorescent probe, and has been successfully used to visualize intracellular GSTP1 activity. Ps-TAc is a prodrug type fluorescent probe in which the phenolic hydroxyl group of Ps-TG is acetylated and thus is susceptible to nonspecific hydrolysis, potentially compromising its ability to detect GSTP1 activity. Here, we describe the development of a highly selective fluorogenic GSTP1 substrate that is membrane permeable and does not involve esterification and show its application to live-cell imaging and FACS analysis. We designed and synthesized several compounds with benzylsulfone substituents instead of the mesyl group of Ps-TG and tested their fluorescence activation by GSTP1 catalysis in vitro and in cellulo. Of the test compounds, Ps-TG3 was the most suitable for the visualization of intracellular GSTP1 activity because the signal from living cells increased significantly when MK-571, an inhibitor of multidrug resistance proteins (MRPs), was simultaneously loaded. The results obtained by co-loading Ps-TG3 and MK571 into GSTP1-nonexpressing cells suggest that Ps-TG3 can be a substrate for MRPs. The usefulness of Ps-TG3 was demonstrated by fluorescence imaging of several cancer cell cultures and FACS analysis of lymphoma cells. The results presented here suggest that Ps-TG3, in combination with MK571, is useful for visualizing and detecting intracellular GSTP1 activity in cancer cells that highly express GSTP1.


Subject(s)
Neoplasms , Prodrugs , ATP Binding Cassette Transporter, Subfamily B , Fluorescent Dyes/chemistry , Glutathione/chemistry , Glutathione S-Transferase pi/chemistry , Glutathione Transferase/chemistry , Humans , Prodrugs/pharmacology
3.
Mol Plant Pathol ; 22(12): 1538-1552, 2021 12.
Article in English | MEDLINE | ID: mdl-34423519

ABSTRACT

The gram-negative plant-pathogenic ß-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal via the methyltransferase PhcB and senses the chemical through the sensor histidine kinase PhcS. This leads to functionalization of the LysR family transcriptional regulator PhcA, regulating QS-dependent genes responsible for the QS-dependent phenotypes including virulence. The phc operon consists of phcB, phcS, phcR, and phcQ, with the latter two encoding regulator proteins with a receiver domain and a histidine kinase domain and with a receiver domain, respectively. To elucidate the function of PhcR and PhcQ in the regulation of QS-dependent genes, we generated phcR-deletion and phcQ-deletion mutants. Though the QS-dependent phenotypes of the phcR-deletion mutant were largely unchanged, deletion of phcQ led to a significant change in the QS-dependent phenotypes. Transcriptome analysis coupled with quantitative reverse transcription-PCR and RNA-sequencing revealed that phcB, phcK, and phcA in the phcR-deletion and phcQ-deletion mutants were expressed at similar levels as in strain OE1-1. Compared with strain OE1-1, expression of 22.9% and 26.4% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcR-deletion mutant. However, expression of 96.8% and 66.9% of positively and negatively QS-dependent genes, respectively, was significantly altered in the phcQ-deletion mutant. Furthermore, a strong positive correlation of expression of these QS-dependent genes was observed between the phcQ-deletion and phcA-deletion mutants. Our results indicate that PhcQ mainly contributes to the regulation of QS-dependent genes, in which PhcR is partially involved.


Subject(s)
Quorum Sensing , Ralstonia solanacearum , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Quorum Sensing/genetics , Ralstonia/metabolism , Ralstonia solanacearum/metabolism , Virulence
4.
ACS Chem Biol ; 15(11): 3050-3059, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33172253

ABSTRACT

Strains of Ralstonia solanacearum species complex (RSSC) cause "bacterial wilt" on a wide range of plant species and thus lead to marked economic losses in agriculture. Quorum sensing (QS), a bacterial cell-cell communication mechanism, controls the virulence of RSSC strains by regulating the production of extracellular polysaccharide (EPS) and secondary metabolites, biofilm formation, and cellular motility. R. solanacearum strain OE1-1 employs (R)-methyl 3-hydroxymyristate (3-OH MAME) as a QS signal, which is synthesized by the PhcB methyltransferase and sensed by the PhcS/PhcRQ two-component system. We describe the design, synthesis, and biological evaluation of inhibitors of the phc QS system. Initial screening of a small set of QS signal analogues revealed that methyl 3-hydroxy-8-phenyloctanoate, named, PQI-1 (phc quorum sensing inhibitor-1), inhibited biofilm formation by strain OE1-1. To improve its inhibitory activity, the derivatives of PQI-1 were synthesized, and their QS inhibition activities were evaluated. PQIs-2-5 evolved from PQI-1 more strongly inhibited not only biofilm formation but also the production of ralfuranone and EPS. Furthermore, RNA-Seq analysis revealed that the PQIs effectively inhibited QS-dependent gene expression and repression in strain OE1-1. On the other hand, the PQIs did not affect the canonical QS systems of the representative reporter bacteria. These antagonists, especially PQI-5, reduced wilting symptoms of the tomato plants infected with strain OE1-1. Taken together, we suggest that targeting the phc QS system has potential for the development of chemicals that protect agricultural crops from bacterial wilt disease.


Subject(s)
Caprylates/pharmacology , Plant Diseases/microbiology , Quorum Sensing/drug effects , Ralstonia solanacearum/drug effects , Biofilms/drug effects , Caprylates/chemistry , Myristates/metabolism , Plant Diseases/prevention & control , Ralstonia solanacearum/pathogenicity , Virulence/drug effects
5.
ACS Chem Biol ; 14(10): 2243-2251, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31513382

ABSTRACT

Ralstonia solanacearum strains are devastating plant pathogens with global distribution, a wide host range, and genetic diversity, and they are now also referred to as the R. solanacearum species complex (RSSC). RSSC strains employ the quorum sensing (QS) system composed of the phcBSR operon to regulate their virulence on plants. The RSSC strains previously examined produce either (R)-methyl 3-hydroxymyristate (3-OH MAME) or (R)-methyl 3-hydroxypalmitate (3-OH PAME) as their QS signals. Analogously, the phylogenetic analyses of the signal synthase PhcB and the signal receptor PhcS from 15 RSSC strains revealed that these proteins have two clades dependent on their QS signal types. However, the biochemical mechanism underlying this selectivity of QS signal production remains to be elucidated. We demonstrated that the PhcB methyltransferases synthesize QS signals from the cognate fatty acids (R)-3-hydroxymyristic acid or (R)-3-hydroxypalmitic acid. The RSSC strains used here produced both fatty acids, and thus the selectivity of QS signal production depends on the activity of PhcB enzymes. On the other hand, the enantioselective supply of the precursors functioned in the production of enantiopure QS signals. The opposite QS signals weakly induced the production of virulence factors in the RSSC strains. Furthermore, the complementation of the phcB gene encoding the 3-OH PAME-type synthase to the phcB-deletion mutant of the 3-OH MAME-producing strain did not rescue its virulence on tomato plants. Taken together, we propose that the specific production of 3-OH MAME/3-OH PAME ensures full virulence of the RSSC strains.


Subject(s)
Bacterial Proteins/metabolism , Methyltransferases/metabolism , Quorum Sensing/physiology , Ralstonia solanacearum/physiology , Virulence Factors/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Expression/physiology , Methyltransferases/chemistry , Methyltransferases/genetics , Myristates/metabolism , Myristic Acids/chemistry , Myristic Acids/metabolism , Palmitic Acids/chemistry , Palmitic Acids/metabolism , Ralstonia solanacearum/pathogenicity , Stereoisomerism , Substrate Specificity , Transcriptome/physiology
6.
ACS Chem Biol ; 14(7): 1546-1555, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31246411

ABSTRACT

Plant pathogenic bacteria possess sophisticated mechanisms to detect the presence of host plants by sensing host-derived compounds. Ralstonia solanacearum, the causative agent of bacterial wilt on solanaceous plants, employs quorum sensing to control the production of the secondary metabolite ralfuranones/ralstonins, which have been suggested to be involved in virulence. Here, we report that d-galactose and d-glucose, plant sugars, activate the production of ralfuranones/ralstonins in R. solanacearum. As a result, two new derivatives, ralfuranone M (1) and ralstonin C (2), were found in the culture extracts, and their structures were elucidated by spectroscopic and chemical methods. Ralstonin C (2) is a cyclic lipopeptide containing a unique fatty acid, (2S,3S,Z)-3-amino-2-hydroxyicos-13-enoic acid, whereas ralfuranone M (1) has a common aryl-furanone structure with other ralfuranones. d-Galactose and d-glucose activated the expression of the biosynthetic ralfuranone/ralstonin genes and in part became the biosynthetic source of ralfuranones/ralstonins. Ralfuranones and ralstonins were detected from the xylem fluid of the infected tomato plants, and their production-deficient mutants exhibited reduced virulence on tomato and tobacco plants. Taken together, these results suggest that activation of ralfuranone/ralstonin production by host sugars functions in R. solanacearum virulence.


Subject(s)
Galactose/metabolism , Glucose/metabolism , Lactones/metabolism , Plant Diseases/microbiology , Ralstonia solanacearum/physiology , Solanaceae/microbiology , Host-Pathogen Interactions , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Quorum Sensing , Ralstonia solanacearum/pathogenicity , Solanaceae/metabolism , Nicotiana/metabolism , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...