Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 13698, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057938

ABSTRACT

The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterise this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.

2.
Proc Natl Acad Sci U S A ; 105(1): 24-7, 2008 Jan 08.
Article in English | MEDLINE | ID: mdl-18162534

ABSTRACT

Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- to 90-nm resolution by using two different tabletop coherent soft x-ray sources-a soft x-ray laser and a high-harmonic source. We also use field curvature correction that allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5lambda. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science because of its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution.


Subject(s)
Microscopy/instrumentation , Optics and Photonics/instrumentation , X-Ray Diffraction/instrumentation , Algorithms , Equipment Design , Image Interpretation, Computer-Assisted , Lasers , Lenses , Nanoparticles , Nanotechnology/methods , Ultraviolet Rays
3.
Acad Radiol ; 9(11): 1305-21, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12449363

ABSTRACT

Dual-modality imaging is a technique in which computed tomography (CT) or magnetic resonance imaging is combined with positron emission tomography or single-photon emission CT to acquire structural and functional images with an integated system. The data are acquired in a single procedure; the patient remains on the scanner table while undergoing both x-ray and radionuclide studies to facilitate correlation between the structural and functional images. The resulting data can aid in localization, enabling more specific diagnosis than can be obtained with a conventional imaging study. In addition, the anatomic information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems are also being developed for biologic research involving small animals. Small-animal dual-modality systems offer advantages for measurements that currently are performed invasively with autoradiography and tissue sampling. By acquiring data noninvasively, dual-modality imaging permits serial studies in a single animal, enables measurements to be performed with fewer animals, and improves the statistical quality of the data.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Radionuclide Imaging/instrumentation , Systems Integration , Tomography, X-Ray Computed/instrumentation , Animals , Equipment Design , Heart Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Physiology , Radionuclide Imaging/methods , Tomography, Emission-Computed/instrumentation , Tomography, Emission-Computed/methods , Tomography, X-Ray Computed/methods
4.
Technol Cancer Res Treat ; 1(6): 449-58, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12625772

ABSTRACT

Dual-modality imaging is an in vivo diagnostic technique that obtains structural and functional information directly from patient studies in a way that cannot be achieved with separate imaging systems alone. Dual-modality imaging systems are configured by combining computed tomography (CT) with radionuclide imaging (using positron emission tomography (PET) or single-photon emission computed tomography (SPECT)) on a single gantry which allows both functional and structural imaging to be performed during a single imaging session without having the patient leave the imaging system. A SPECT/CT system developed at UCSF is being used in a study to determine if dual-modality imaging offers advantages for assessment of patients with prostate cancer using (111)In-ProstaScint, a radiolabeled antibody for the prostate-specific membrane antigen. (111)In-ProstaScint images are reconstructed using an iterative maximum-likelihood expectation-maximization (ML-EM) algorithm with correction for photon attenuation using a patient-specific map of attenuation coefficients derived from CT. The ML-EM algorithm accounts for the dual-photon nature of the 111In-labeled radionuclide, and incorporates correction for the geometric response of the radionuclide collimator. The radionuclide image then can be coregistered and overlaid in color on a grayscale CT image for improved localization of the functional information from SPECT. Radionuclide images obtained with SPECT/CT and reconstructed using ML-EM with correction for photon attenuation and collimator response improve image quality in comparison to conventional radionuclide images obtained with filtered backprojection reconstruction. These results illustrate the potential advantages of dual-modality imaging for improving the quality and the localization of radionuclide uptake for staging disease, planning treatment, and monitoring therapeutic response in patients with cancer.


Subject(s)
Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Tomography, Emission-Computed, Single-Photon/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...