Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
J Clin Med ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673515

ABSTRACT

The fractional flow reserve (FFR) is well recognized as a gold standard measure for the estimation of functional coronary stenosis. Technological progressions in image processing have empowered the reconstruction of three-dimensional models of the coronary arteries via both non-invasive and invasive imaging modalities. The application of computational fluid dynamics (CFD) techniques to coronary 3D anatomical models allows the virtual evaluation of the hemodynamic significance of a coronary lesion with high diagnostic accuracy. METHODS: Search of the bibliographic database for articles published from 2011 to 2023 using the following search terms: invasive FFR and non-invasive FFR. Pooled analysis of the sensitivity and specificity, with the corresponding confidence intervals from 32% to 94%. In addition, the summary processing times were determined. RESULTS: In total, 24 studies published between 2011 and 2023 were included, with a total of 13,591 patients and 3345 vessels. The diagnostic accuracy of the invasive and non-invasive techniques at the per-patient level was 89% (95% CI, 85-92%) and 76% (95% CI, 61-80%), respectively, while on the per-vessel basis, it was 92% (95% CI, 82-88%) and 81% (95% CI, 75-87%), respectively. CONCLUSION: These opportunities providing hemodynamic information based on anatomy have given rise to a new era of functional angiography and coronary imaging. However, further validations are needed to overcome several scientific and computational challenges before these methods are applied in everyday clinical practice.

2.
Article in English | MEDLINE | ID: mdl-38082601

ABSTRACT

An emerging area in data science that has lately gained attention is the virtual population (VP) and synthetic data generation. This field has the potential to significantly affect the healthcare industry by providing a means to augment clinical research databases that have a shortage of subjects. The current study provides a comparative analysis of five distinct approaches for creating virtual data populations from real patient data. The data set utilized for the current analyses involved clinical data collected among patients scheduled for elective coronary artery bypass graft surgery (CABG). To that end, the five computational techniques employed to augment the given dataset were: (i) Tabular Preset, (ii) Gaussian Copula Model (iii) Generative Adversarial Network based (GAN) Deep Learning data synthesizer (CTGAN), (iv) a variation of the CTGAN Model (Copula GAN), and (v) VAE-based Deep Learning data synthesizer (TVAE). The performance of these techniques was assessed against their effectiveness in producing high-quality virtual data. For this purpose, dataset correlation matrices, cosine similarity distance, density histograms, and kernel density estimation are employed to perform a comparative analysis of each attribute and the respective synthetic equivalent. Our findings demonstrate that Gaussian Copula Model prevails in creating virtual data with consistent distributions (Kolmogorov-Smirnov (KS) and Chi-Squared (CS) tests equal to 0.9 and 0.98, respectively) and correlation patterns (average cosine similarity equals to 0.95).Clinical Relevance- It has been shown that the use of a VP can increase the predictive performance of a ML model, i.e., above using a smaller non-augmented population.


Subject(s)
Coronary Artery Bypass , Heart , Humans , Chronic Disease , Data Accuracy , Data Science
3.
Article in English | MEDLINE | ID: mdl-38082959

ABSTRACT

One of the main causes of death worldwide is carotid artery disease, which causes increasing arterial stenosis and may induce a stroke. To address this problem, the scientific community aims to improve our understanding of the underlying atherosclerotic mechanisms, as well as to make it possible to forecast the progression of atherosclerosis. Additionally, over the past several years, developments in the field of cardiovascular modeling have made it possible to create precise three-dimensional models of patient-specific main carotid arteries. The aforementioned 3D models are then implemented by computational models to forecast either the progression of atherosclerotic plaque or several flow-related metrics which are correlated to risk evaluation. A precise representation of both the blood flow and the fundamental atherosclerotic process within the arterial wall is made possible by computational models, therefore, allowing for the prediction of future lumen stenoses, plaque areas and risk prediction. This work presents an attempt to integrate the outcomes of a novel plaque growth model with advanced blood flow dynamics where the deformed luminal shape derived from the plaque growth model is compared to the actual patient-specific luminal model in terms of several hemodynamic metrics, to identify the prediction accuracy of the aforementioned model. Pressure drop ratios had a mean difference of <3%, whereas OSI-derived metrics were identical in 2/3 cases.Clinical Relevance-This establishes the accuracy of our plaque growth model in predicting the arterial geometry after the desired timeline.


Subject(s)
Atherosclerosis , Carotid Artery Diseases , Plaque, Atherosclerotic , Stroke , Humans , Carotid Artery Diseases/diagnosis , Carotid Arteries , Hemodynamics
4.
Article in English | MEDLINE | ID: mdl-38082986

ABSTRACT

The severity of coronary artery disease can be assessed invasively using the Fractional Flow Reserve (FFR) index which is a useful diagnostic tool for the clinicians to select the treatment approach. The present work capitalizes a Gaussian process (GP) framework over graphs for the prediction of FFR index using only non-invasive imaging and clinical features. More specifically, taking the per-node one-hop connectivity vector as input, we employed a regression-based task by applying an ensemble of graph-adapted Gaussian process experts, with a data-adaptive fashion via online training. The main novelty of the work lies in the fact that for the first time in a medical field the inference model considers only the similarity condition of the patients, instead of their features. Our results demonstrate the impressive merits of the proposed medical EGP (MedEGP) method, in comparison to the single GP, and Linear Regression (LR) models to predict the FFR index, with well-calibrated uncertainty.Clinical Relevance- This paper establishes an accurate non-invasive approach to predict the FFR for the diagnosis of coronary artery disease.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/therapy , Coronary Stenosis/diagnosis , Coronary Angiography/methods , Uncertainty , Predictive Value of Tests
5.
Article in English | MEDLINE | ID: mdl-38083139

ABSTRACT

Lower extremity amputation and requirement of peripheral artery revascularization are common outcomes of undiagnosed peripheral artery disease patients. In the current work, prediction models for the need of amputation or peripheral revascularization focused on hypertensive patients within seven years follow up are employed. We applied machine learning (ML) models using classifiers such as Extreme Gradient Boost (XGBoost), Random Forest (RF) and Adaptive Boost (AdaBoost), that will allow clinicians to identify the patients at risk of these two endpoints using simple clinical data. We used the non-interventional cohort of the getABI study in the primary care setting, selecting 4,191 hypertensive patients out of 6,474 patients with age over 65 years old and followed up for vascular events or death up to 7 years. During this follow up period, 150 patients underwent either amputation or peripheral revascularization or both. Accuracy, Specificity, Sensitivity and Area under the receiver operating characteristic curve (AUC) were estimated for each machine learning model. The results demonstrate Random Forest as the most accurate model for the prediction of the composite endpoint in hypertensive patients within 7 years follow-up, achieving 73.27 % accuracy.Clinical Relevance-This study assists clinicians to better predict and treat these serious outcomes, amputation and peripheral revascularization in hypertensive patients.


Subject(s)
Arteries , Vascular Surgical Procedures , Humans , Aged , Follow-Up Studies , Amputation, Surgical , Machine Learning
6.
Article in English | MEDLINE | ID: mdl-38083146

ABSTRACT

Coronary artery disease (CAD) is a chronic disease associated with high mortality and morbidity. Although treatment with drug-eluting stents is the most frequent interventional approach for coronary artery disease, drug-coated balloons (DCBs) constitute an innovative alternative, especially in the presence of certain anatomical conditions in the local coronary vasculature. DCBs allow the fast and homogenous transfer of drugs into the arterial wall, during the balloon inflation. Their use has been established for treating in-stent restenosis caused by stent implantation, while recent clinical trials have shown a satisfactory efficacy in de novo small-vessel disease. Several factors affect DCBs performance including the catheter design, the drug dose and formulation. Cleverballoon focuses on the design and development of an innovative DCB with everolimus. For the realization of the development of this new DCB, an integrated approach, including in- vivo, in-vitro studies and in-silico modelling towards the DCB optimization, is presented.Clinical Relevance-The proposed study introduces the integration of in- vivo, in-vitro and in silico approaches in the design and development process of a new DCB, following the principles of 3R's for the replacement, reduction, and refinement of animal and clinical studies.


Subject(s)
Angioplasty, Balloon, Coronary , Coronary Artery Disease , Animals , Coronary Artery Disease/therapy , Everolimus/pharmacology , Treatment Outcome
7.
Article in English | MEDLINE | ID: mdl-38083155

ABSTRACT

Carotid Artery Disease is a complex multi-disciplinary medical condition causing strokes and several other disfunctions to individuals. Within this work, a cloud - based platform is proposed for clinicians and medical doctors that provides a comprehensive risk assessment tool for carotid artery disease. It includes three modeling levels: baseline data-driven risk assessment, blood flow simulations and plaque progression modeling. The proposed models, which have been validated through a wide set of studies within the TAXINOMISIS project, are delivered to the end users through an easy-to-use cloud platform. The architecture and the deployment of this platform includes interfaces for handling the electronic patient record, the 3D arterial reconstruction, blood flow simulations and risk assessment reporting. TAXINOMISIS, compared with both similar software approaches and with the current clinical workflow, assists clinicians to treat patients more effectively and more accurately by providing innovative and validated tools.Clinical Relevance - Asymptomatic carotid artery disease is a prevalent condition that affects a significant portion of the population, leading to an increased risk of stroke and other cardiovascular events. Early detection and appropriate treatment of this condition can significantly reduce the risk of adverse outcomes and improve patient outcomes. The development of a software tool to assist clinicians in the assessment and management of asymptomatic patients with carotid artery disease is therefore of great clinical relevance. By providing a comprehensive and reliable assessment of the disease and its risk factors, this tool will enable clinicians to make informed decisions regarding patient management and treatment. The impact of this tool on patient outcomes and the reduction of healthcare costs will be of great importance to both patients and the healthcare system.


Subject(s)
Carotid Artery Diseases , Stroke , Humans , Carotid Artery Diseases/diagnosis , Stroke/diagnosis , Stroke/prevention & control , Risk Assessment , Risk Factors
8.
Article in English | MEDLINE | ID: mdl-38083292

ABSTRACT

A reform in the diagnosis and treatment process is urgently required as carotid artery disease remains a leading cause of death in the world. To this purpose, all computational techniques are now being applied to enhancing the most cutting-edge diagnosis techniques. Computational modeling of plaque generation and evolution is being refined over the past years to forecast the atherosclerotic progression and the corresponding risk in patient-specific carotid arteries. A prerequisite to their implementation is the reconstruction of the precise three-dimensional models of patient-specific main carotid arteries. Even with the most sophisticated algorithms, accurate reconstruction of the arterial vessel is frequently difficult. Furthermore, there are several works of plaque growth modeling that ignore the reconstruction of the artery's outer layer in favor of a virtual one. In this paper, we investigate the importance of an accurate adventitia layer in plaque growth modeling. This is done as a comparative study by implementing a novel plaque growth model in two reconstructed carotid arterial segments using either their realistic or virtual adventitia layer as input. The results indicate that accurate adventitia reconstruction is of minor importance regarding species distributions and plaque growth in carotid segments, which initially did not contain any plaque regions.Clinical Relevance- The findings of this comparative study emphasize the importance of precise adventitia geometry in plaque growth modeling. As a result, this work sets a higher standard for publishing new plaque growth models.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnosis , Adventitia , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/diagnostic imaging , Computer Simulation
9.
Article in English | MEDLINE | ID: mdl-38083544

ABSTRACT

Atherosclerotic carotid plaque development results in a steady narrowing of the artery lumen, which may eventually trigger catastrophic plaque rupture leading to thromboembolism and stroke. The primary cause of ischemic stroke in the EU is carotid artery disease, which increases the demand for tools for risk stratification and patient management in carotid artery disease. Additionally, advancements in cardiovascular modeling over the past few years have made it possible to build accurate three-dimensional models of patient-specific primary carotid arteries. Computational models then incorporate the aforementioned 3D models to estimate either the development of atherosclerotic plaque or a number of flow-related parameters that are linked to risk assessment. This work presents an attempt to provide a carotid artery stenosis prognostic model, utilizing non-imaging and imaging data, as well as simulated hemodynamic data. The overall methodology was trained and tested on a dataset of 41 cases with 23 carotid arteries with stable stenosis and 18 carotids with increasing stenosis degree. The highest accuracy of 71% was achieved using a neural network classifier. The novel aspect of our work is the definition of the problem that is solved, as well as the amount of simulated data that are used as input for the prognostic model.Clinical Relevance-A prognostic model for the prediction of the trajectory of carotid artery atherosclerosis is proposed, which can support physicians in critical treatment decisions.


Subject(s)
Carotid Artery Diseases , Carotid Stenosis , Plaque, Atherosclerotic , Humans , Carotid Stenosis/diagnosis , Carotid Stenosis/diagnostic imaging , Constriction, Pathologic , Carotid Arteries/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Machine Learning
10.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36975894

ABSTRACT

Diagnosis of coronary artery disease is mainly based on invasive imaging modalities such as X-ray angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Computed tomography coronary angiography (CTCA) is also used as a non-invasive imaging alternative. In this work, we present a novel and unique tool for 3D coronary artery reconstruction and plaque characterization using the abovementioned imaging modalities or their combination. In particular, image processing and deep learning algorithms were employed and validated for the lumen and adventitia borders and plaque characterization at the IVUS and OCT frames. Strut detection is also achieved from the OCT images. Quantitative analysis of the X-ray angiography enables the 3D reconstruction of the lumen geometry and arterial centerline extraction. The fusion of the generated centerline with the results of the OCT or IVUS analysis enables hybrid coronary artery 3D reconstruction, including the plaques and the stent geometry. CTCA image processing using a 3D level set approach allows the reconstruction of the coronary arterial tree, the calcified and non-calcified plaques as well as the detection of the stent location. The modules of the tool were evaluated for efficiency with over 90% agreement of the 3D models with the manual annotations, while a usability assessment using external evaluators demonstrated high usability resulting in a mean System Usability Scale (SUS) score equal to 0.89, classifying the tool as "excellent".

11.
Int J Cardiovasc Imaging ; 39(2): 441-450, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36255544

ABSTRACT

Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis. Minimal and maximal ESS values were calculated for 3-mm segments. Factors potentially affecting ESS values were examined, including sex, lumen diameter and distance from the ostium. Segments were categorized according to lumen diameter tertiles into small (< 2.6 mm), intermediate (2.6-3.2 mm) or large (≥ 3.2 mm) segments. A total of 349 normal vessels from 168 patients (mean age 59 ± 9 years, 39% men) were included. ESS was highest in the left anterior descending artery compared to the left circumflex artery and right coronary artery (minimal ESS 2.3 Pa vs. 1.9 Pa vs. 1.6 Pa, p < 0.001 and maximal ESS 3.7 Pa vs. 3.0 Pa vs. 2.5 Pa, p < 0.001). Men had lower ESS values than women, also after adjusting for lumen diameter (p < 0.001). ESS values were highest in small segments compared to intermediate or large segments (minimal ESS 3.8 Pa vs. 1.7 Pa vs. 1.2 Pa, p < 0.001 and maximal ESS 6.0 Pa vs. 2.6 Pa vs. 2.0 Pa, p < 0.001). A weak to strong correlation was found between ESS and distance from the ostium (ρ = 0.22-0.62, p < 0.001). CCTA-based ESS values increase rapidly and become widely scattered with decreasing lumen diameter. This needs to be taken into account when assessing the added value of ESS beyond lumen diameter in highly stenotic lesions.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Plaque, Atherosclerotic , Male , Humans , Female , Middle Aged , Aged , Coronary Vessels/pathology , Plaque, Atherosclerotic/pathology , Computed Tomography Angiography , Coronary Angiography/methods , Predictive Value of Tests , Coronary Artery Disease/pathology , Atherosclerosis/pathology
12.
Diagnostics (Basel) ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201376

ABSTRACT

Several studies have demonstrated a critical association between cardiovascular disease (CVD) and mental health, revealing that approximately one-third of individuals with CVD also experience depression. This comorbidity significantly increases the risk of cardiac complications and mortality, a risk that persists regardless of traditional factors. Addressing this issue, our study pioneers a straightforward, explainable, and data-driven pipeline for predicting depression in CVD patients. METHODS: Our study was conducted at a cardiac surgical intensive care unit. A total of 224 participants who were scheduled for elective coronary artery bypass graft surgery (CABG) were enrolled in the study. Prior to surgery, each patient underwent psychiatric evaluation to identify major depressive disorder (MDD) based on the DSM-5 criteria. An advanced data curation workflow was applied to eliminate outliers and inconsistencies and improve data quality. An explainable AI-empowered pipeline was developed, where sophisticated machine learning techniques, including the AdaBoost, random forest, and XGBoost algorithms, were trained and tested on the curated data based on a stratified cross-validation approach. RESULTS: Our findings identified a significant correlation between the biomarker "sRAGE" and depression (r = 0.32, p = 0.038). Among the applied models, the random forest classifier demonstrated superior accuracy in predicting depression, with notable scores in accuracy (0.62), sensitivity (0.71), specificity (0.53), and area under the curve (0.67). CONCLUSIONS: This study provides compelling evidence that depression in CVD patients, particularly those with elevated "sRAGE" levels, can be predicted with a 62% accuracy rate. Our AI-driven approach offers a promising way for early identification and intervention, potentially revolutionizing care strategies in this vulnerable population.

13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1066-1069, 2022 07.
Article in English | MEDLINE | ID: mdl-36085658

ABSTRACT

Cardiovascular diseases (CVDs) are among the most serious disorders leading to high mortality rates worldwide. CVDs can be diagnosed and prevented early by identifying risk biomarkers using statistical and machine learning (ML) models, In this work, we utilize clinical CVD risk factors and biochemical data using machine learning models such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), Extreme Grading Boosting (XGB) and Adaptive Boosting (AdaBoost) to predict death caused by CVD within ten years of follow-up. We used the cohort of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study and 2943 patients were included in the analysis (484 annotated as dead due to CVD). We calculated the Accuracy (ACC), Precision, Recall, F1-Score, Specificity (SPE) and area under the receiver operating characteristic curve (AUC) of each model. The findings of the comparative analysis show that Logistic Regression has been proven to be the most reliable algorithm having accuracy 72.20 %. These results will be used in the TIMELY study to estimate the risk score and mortality of CVD in patients with 10-year risk.


Subject(s)
Cardiovascular Diseases , Bayes Theorem , Cardiovascular Diseases/diagnosis , Humans , Machine Learning , Risk Factors , Support Vector Machine
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1041-1044, 2022 07.
Article in English | MEDLINE | ID: mdl-36085692

ABSTRACT

Carotid artery disease, the pathological condition of carotid arteries, is considered as the most significant cause of cerebral events and stroke. Carotid artery disease is considered as an inflammatory process, which involves the deposition and accumulation of atherosclerotic plaque inside the carotid intima, resulting in the narrowing of the arteries. Carotid artery stenosis (CAS) is either symptomatic or asymptomatic and its presence and location is determined by different imaging modalities, such as the carotid duplex ultrasound, the computed tomography angiography, the magnetic resonance angiography (MRA) and the cerebral angiography. The aim of this study is to present a machine learning model for the diagnosis and identification of individuals of asymptomatic carotid artery stenosis, using as input typical health data. More specifically, the overall model is trained with typical demographics, clinical data, risk factors and medical treatment data and is able to classify the individuals into high risk (Class 1-CAS group) and low risk (Class 0-non CAS group) individuals. In the presented study, we implemented a statistical analysis to check the data quality and the distribution into the two classes. Different feature selection techniques, in combination with classification schemes were applied for the development of our machine learning model. The overall methodology has been trained and tested using 881 cases (443 subjects in low risk class and 438 in high risk class). The highest accuracy 0.82 and an area under curve 0.9 were achieved using the relief feature selection technique and the random forest classification scheme.


Subject(s)
Carotid Stenosis , Plaque, Atherosclerotic , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Carotid Stenosis/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Angiography , Plaque, Atherosclerotic/pathology
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1590-1593, 2022 07.
Article in English | MEDLINE | ID: mdl-36085734

ABSTRACT

The carotid artery disease is one of the leading causes of mortality worldwide, as it leads to the progressive arterial stenosis that may result to stroke. To address this issue, the scientific community is attempting not only to enrich our knowledge on the underlying atherosclerotic mechanisms, but also to enable the prediction of the atherosclerotic progression. This study investigates the role of T-cells in the atherosclerotic plaque growth process through the implementation of a computational model in realistic geometries of carotid arteries. T-cells mediate in the inflammatory process by secreting interferon-y that enhances the activation of macrophages. In this analysis, we used 5 realistic human carotid arterial segments as input to the model. In particular, magnetic resonance imaging data, as well as, clinical data were collected from the patients at two time points. Using the baseline data, plaque growth was predicted and correlated to the follow-up arterial geometries. The results exhibited a very good agreement between them, presenting a high coefficient of determination R2=0.64.


Subject(s)
Carotid Artery Diseases , Plaque, Atherosclerotic , Carotid Arteries/diagnostic imaging , Humans , Leukocyte Count , Plaque, Atherosclerotic/diagnostic imaging , T-Lymphocytes
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 621-624, 2022 07.
Article in English | MEDLINE | ID: mdl-36085907

ABSTRACT

Atherosclerosis is one of the most mortal diseases that affects the arterial vessels, due to accumulation of plaque, altering the hemodynamic environment of the artery by preventing the sufficient delivery of blood to other organs. Stents are expandable tubular wires, used as a treatment option. In silico studies have been extensively exploited towards examining the performance of such devices by employing Finite Element Modeling. This study models the crimping stage during stent implantation to examine the effect of inclusion of pre-stress state of the stent. The results show that modeling of the crimping stress state of the stent prior to the deployment results in under-expansion of the stent, due to the indirect inclusion of strain-induced hardening effects. As a result, it is evident that the compressive stent stress configuration is important to be considered in the computational modeling approaches of stent deployment.


Subject(s)
Atherosclerosis , Data Compression , Arteries , Computer Simulation , Humans , Stents
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3985-3988, 2022 07.
Article in English | MEDLINE | ID: mdl-36086124

ABSTRACT

Cardiovascular disease (CVD) and especially atherosclerosis are chronic inflammatory diseases which cause the atherosclerotic plaque growth in the arterial vessels and the blood flow reduction. Stents have revolutionized the treatment of this disease to a great extent by restoring the blood flow in the vessel. The present study investigates the performance of the blood flow after stent implantation in patient-specific coronary artery and demonstrates the effect of using Newtonian vs. non-Newtonian blood fluid models in the distribution of endothelial shear stress. In particular, the Navier-Stokes and continuity equations were employed, and three non-Newtonian fluid models were investigated (Carreau, Carreau-Yasuda and the Casson model). Computational finite elements models were used for the simulation of blood flow. The comparison of the results demonstrates that the Newtonian fluid model underestimates the calculation of Endothelial Shear Stress, while the three non-Newtonian fluids present similar distribution of shear stress. Keywords: Blood flow dynamics, stented artery, non-Newtonian fluid. Clinical Relevance- This work demonstrates that when blood flow modeling is performed at stented arteries and predictive models are developed, the non-Newtonian nature of blood must be considered.


Subject(s)
Coronary Vessels , Hemodynamics , Computer Simulation , Humans , Rheology , Stress, Mechanical
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4970-4973, 2022 07.
Article in English | MEDLINE | ID: mdl-36086562

ABSTRACT

Bioresorbable Vascular Scaffolds (BVS), developed to allow drug deliver and mechanical support, followed by complete resorption, have revolutionized atherosclerosis treatment. InSilc is a Cloud platform for in silico clinical trials (ISCT) used in the design, development and evaluation pipeline of stents. The platform integrates beyond the state-of-the-art multi-disciplinary and multiscale models, which predict the scaffold's performance in the short/acute and medium/long term. In this study, a use case scenario of two Bioabsorbable Vascular Stents (BVSs) implanted in the same arterial anatomy is presented, allowing the whole InSilc in silico pipeline to be applied and predict how the different aspects of this intervention affect the success of stenting process.


Subject(s)
Absorbable Implants , Percutaneous Coronary Intervention , Stents , Tissue Scaffolds
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3839-3842, 2022 07.
Article in English | MEDLINE | ID: mdl-36086640

ABSTRACT

The left atrium (LA) is one of the cardiac cavities with the most complex anatomical structures. Its role in the clinical diagnosis and patient's management is critical, as it is responsible for the atrial fibrillation, a condition that promotes the thrombogenesis inside the left atrial appendage. The development of an automated approach for LA segmentation is a demanding task mainly due to its anatomical complexity and the variation of its shape among patients. In this study, we focus to develop an unbiased pipeline capable to segment the atrial cavity from CT images. For evaluation purposes state-of-the-art metrics were used to assess the segmentation results. Particularly, the results indicated the mean values of the dice score 80%, the hausdorff distance 11.78mm, the average surface distance 2.24mm and the rand error index 0.2.


Subject(s)
Atrial Fibrillation , Deep Learning , Atrial Fibrillation/diagnostic imaging , Heart Atria/diagnostic imaging , Humans , Tomography, X-Ray Computed/methods
20.
Diagnostics (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35741275

ABSTRACT

The prediction of obstructive atherosclerotic disease has significant clinical meaning for the decision making. In this study, a machine learning predictive model based on gradient boosting classifier is presented, aiming to identify the patients of high CAD risk and those of low CAD risk. The machine learning methodology includes five steps: the preprocessing of the input data, the class imbalance handling applying the Easy Ensemble algorithm, the recursive feature elimination technique implementation, the implementation of gradient boosting classifier, and finally the model evaluation, while the fine tuning of the presented model was implemented through a randomized search optimization of the model's hyper-parameters over an internal 3-fold cross-validation. In total, 187 participants with suspicion of CAD previously underwent CTCA during EVINCI and ARTreat clinical studies and were prospectively included to undergo follow-up CTCA. The predictive model was trained using imaging data (geometrical and blood flow based) and non-imaging data. The overall predictive accuracy of the model was 0.81, using both imaging and non-imaging data. The innovative aspect of the proposed study is the combination of imaging-based data with the typical CAD risk factors to provide an integrated CAD risk-predictive model.

SELECTION OF CITATIONS
SEARCH DETAIL
...