Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Mol Biol Rep ; 50(5): 4049-4060, 2023 May.
Article in English | MEDLINE | ID: mdl-36869205

ABSTRACT

BACKGROUND: Vegetable soybean seeds are among the most popular and nutrient-dense beans in the world due to their delicious flavor, high yield, superior nutritional value, and low trypsin content. There is significant potential for this crop that Indian farmers do not fully appreciate because of the limited germplasm range. Therefore, the current study aims to identify the diverse lines of vegetable soybean and explore the diversity produced by hybridizing grain and vegetable-type soybean varieties. Indian researchers have not yet published work describing and analysing novel vegetable soybean for microsatellite markers and morphological traits. METHODS AND RESULTS: Sixty polymorphic SSR markers and 19 morphological traits were used to evaluate the genetic diversity of 21 newly developed vegetable soybean genotypes. A total of 238 alleles, ranging from 2 to 8, were found, with a mean of 3.97 alleles per locus. The polymorphism information content varied from 0.05 to 0.85, with an average of 0.60. A variation of 0.25-0.58 with a mean of 0.43 was observed for Jaccard's dissimilarity coefficient. CONCLUSION: The diverse genotypes identified can be helpful to understand the genetics of vegetable soybean traits and can be used in improvement programs; study also explains the utility of SSR markers for diversity analysis of vegetable soybean. Here, we identified the highly informative SSRs with PIC > 0.80 (satt199, satt165, satt167, satt191, satt183, satt202, and satt126), which apply to genetic structure analysis, mapping strategies, polymorphic marker surveys, and background selection in genomics-assisted breeding.


Subject(s)
Genetic Variation , Glycine max , Genetic Variation/genetics , Glycine max/genetics , Vegetables/genetics , Plant Breeding , Genotype , Microsatellite Repeats/genetics
2.
Braz. arch. biol. technol ; 65: e22210115, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364466

ABSTRACT

Abstract: It has learned that soybean is being affected by a floral disorder known as floral malady where plants fail to develop pod and do notattendfull maturity. For this floral disorder, we present a new methylation-sensitive amplified polymorphism (MSAP) approach for the evaluation of relative quantitative characteristics of non-methylation, hyper-methylation, hemi-methylation, and full methylation status of CCGG sequences, which are recognized by the isoschizomers HpaII and MspI. We applied a technique to analyze alterations in the cytosine methylation a popular Indian soybean (Glycine max L.) genotype, JS-335.The result revealed that in the symptomatic plant, out of 392 MSAP sites, 281 (71.68%), 33 (8.41%),38 (9.69%), and 40(10.20%) found to beun-methylated, hemi-methylated, fully methylated and hyper-methylated, respectively. Whereas, the MSAP profile of asymptomatic plants revealedout of 402MSAP sites, 330 (81.28%) was un-methylated, 22(5.41%) hemi-methylated,29(7.14%) fully methylatedand 25 (6.15%) hypermethylated. In comparison with asymptomatic(18.71%) plant, approximately 10% increased methylation was noted in symptomatic(28.31%) plantprofiles. The increased levels of methylation was recorded in the symptomatic plants about 28.31%and18.71% in asymptomatic. The study showed a higher epigenetic influence on JS-335 genotype of floral malady symptomatic than same genotype of asymptomatic plant. No pod formation in symptomatic plant induce genome wide changes either in promoter or coding region of gene(s) and DNA fragments showing polymorphism related to differences in pattern and extent of methylation associated with floral malady.

SELECTION OF CITATIONS
SEARCH DETAIL
...