Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22280170

ABSTRACT

ImportanceEstimating the true burden of SARS-CoV-2 infection has been difficult in sub-Saharan Africa due to asymptomatic infections and inadequate testing capacity. Antibody responses from serologic surveys can provide an estimate of SARS-CoV-2 exposure at the population level. ObjectiveTo estimate SARS-CoV-2 seroprevalence, attack rates, and re-infection in eastern Uganda using serologic surveillance from 2020 to early 2022. DesignPlasma samples from participants in the Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda (PRISM) Border Cohort were obtained at four sampling intervals: October-November 2020; March-April 2021; August-September 2021; and February-March 2022. Setting: Tororo and Busia districts, Uganda. Participants1,483 samples from 441 participants living in 76 households were tested. Each participant contributed up to 4 time points for SARS-CoV-2 serology, with almost half of all participants contributing at all 4 time points, and almost 90% contributing at 3 or 4 time points. Information on SARS-CoV-2 vaccination status was collected from participants, with the earliest reported vaccinations in the cohort occurring in May 2021. Main Outcome(s) and Measure(s)The main outcomes of this study were antibody responses to the SARS-CoV-2 spike protein as measured with a bead-based serologic assay. Individual-level outcomes were aggregated to population-level SARS-CoV-2 seroprevalence, attack rates, and boosting rates. Estimates were weighted by the local age distribution based on census data. ResultsBy the end of the Delta wave and before widespread vaccination, nearly 70% of the study population had experienced SARS-CoV-2 infection. During the subsequent Omicron wave, 85% of unvaccinated, previously seronegative individuals were infected for the first time, and [~]50% or more of unvaccinated, already seropositive individuals were likely re-infected, leading to an overall 96% seropositivity in this population. Our results suggest a lower probability of re-infection in individuals with higher pre-existing antibody levels. We found evidence of household clustering of SARS-CoV-2 seroconversion. We found no significant associations between SARS-CoV-2 seroconversion and gender, household size, or recent Plasmodium falciparum malaria exposure. Conclusions and RelevanceFindings from this study are consistent with very high infection rates and re-infection rates for SARS-CoV-2 in a rural population from eastern Uganda throughout the pandemic.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22279519

ABSTRACT

BackgroundCauses of non-malarial fevers in sub-Saharan Africa remain understudied. We hypothesized that metagenomic next-generation sequencing (mNGS), which allows for broad genomic-level detection of infectious agents in a biological sample, can systematically identify potential causes of non-malarial fevers. Methods and FindingsThe 212 participants in this study were of all ages and were enrolled in a longitudinal malaria cohort in eastern Uganda. Between December 2020 and August 2021, respiratory swabs and plasma samples were collected at 313 study visits where participants presented with fever and were negative for malaria by microscopy. Samples were analyzed using CZ ID, a web-based platform for microbial detection in mNGS data. Overall, viral pathogens were detected at 123 of 313 visits (39%). SARS-CoV-2 was detected at 11 visits, from which full viral genomes were recovered from nine. Other prevalent viruses included Influenza A (14 visits), RSV (12 visits), and three of the four strains of seasonal coronaviruses (6 visits). Notably, 11 influenza cases occurred between May and July 2021, coinciding with when the Delta variant of SARS-CoV-2 was circulating in this population. The primary limitation of this study is that we were unable to estimate the contribution of bacterial microbes to non-malarial fevers, due to the difficulty of distinguishing bacterial microbes that were pathogenic from those that were commensal or contaminants. ConclusionsThese results revealed the co-circulation of multiple viral pathogens likely associated with fever in the cohort during this time period. This study illustrates the utility of mNGS in elucidating the multiple causes of non-malarial febrile illness. A better understanding of the pathogen landscape in different settings and age groups could aid in informing diagnostics, case management, and public health surveillance systems.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22278710

ABSTRACT

BackgroundImplications of the COVID-19 pandemic for both populations and healthcare systems are vast. In addition to morbidity and mortality from COVID-19, the pandemic also has disrupted local health systems, including reductions or delays in routine vaccination services and catch-up vaccination campaigns that could lead to outbreaks of other infectious diseases that result in an additional burden of disease and strain on the healthcare system. Methods and FindingsWe evaluated the impact of the COVID-19 pandemic on Zambias routine childhood immunization program in 2020 using multiple sources of data. We relied on district-level administrative vaccination coverage data and Zambias 2018 Demographic and Health Survey to project disruptions to routine childhood vaccination within the pandemic year 2020 (N=5,670). Next, we leveraged serological data to predict age-specific measles seroprevalence and assessed the impact of changes in vaccination coverage on measles outbreak risk in each district. We found minor disruptions to routine administration of measles-rubella and pentavalent vaccines in 2020. This was in part due to Zambias Child Health Week held in June of 2020 which helped to reach children missed during the first six months of the year. We estimated that the two-month delay in a measles-rubella vaccination campaign, originally planned for September of 2020 but conducted in November of 2020 as a result of the pandemic, had little impact on modeled district-specific measles outbreak risks. ConclusionsThe pandemic only minimally increased the number of children missed by measles-rubella and pentavalent vaccines in 2020. However, the ongoing SARS-CoV-2 transmission since our analysis concluded means efforts to maintain routine immunization services and minimize the risk of measles outbreaks will continue to be critical. Fortunately, the methodological framework developed in this analysis relied on routinely collected data and can be used to evaluate COVID-19 pandemic disruptions in Zambia following 2020 and in other countries or for other vaccines at a sub-national level.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22269670

ABSTRACT

SARS-CoV-2-specific CD4+ T cells are likely important in immunity against COVID-19, but our understanding of CD4+ longitudinal dynamics following infection and specific features that correlate with the maintenance of neutralizing antibodies remains limited. We characterized SARS-CoV-2-specific CD4+ T cells in a longitudinal cohort of 109 COVID-19 outpatients. The quality of the SARS-CoV-2-specific CD4+ response shifted from cells producing IFN{gamma} to TNF+ from five days to four months post-enrollment, with IFN{gamma}-IL21-TNF+ CD4+ T cells the predominant population detected at later timepoints. Greater percentages of IFN{gamma}-IL21-TNF+ CD4+ T cells on day 28 correlated with SARS-CoV-2 neutralizing antibodies measured seven months post-infection ({rho}=0.4, P=0.01). mRNA vaccination following SARS-CoV-2 infection boosted both IFN{gamma} and TNF producing, spike protein-specific CD4+ T cells. These data suggest that SARS-CoV-2-specific, TNF-producing CD4+ T cells may play an important role in antibody maintenance following COVID-19.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21264573

ABSTRACT

BackgroundAs COVID-19 vaccines continue to be rolled-out, the "double burden" of health disparities in both exposure to infection and vaccination coverage intersect to determine the current and future patterns of infection, immunity, and mortality. Serology provides a unique opportunity to measure biomarkers of infection and vaccination simultaneously, and to relate these metrics to demographic and geographic factors. MethodsLeveraging algorithmically selected residual serum samples from two hospital networks in San Francisco, we sampled 1014 individuals during February 2021, capturing transmission during the first 11 months of the epidemic and the early roll out of vaccination. These samples were tested using two serologic assays: one detecting antibodies elicited by infection, and not by vaccines, and one detecting antibodies elicited by both infection and vaccination. We used Bayesian statistical models to estimate the proportion of the population that was naturally infected and the proportion protected due to vaccination. FindingsWe estimated that the risk of prior infection of Latinx residents was 5.3 (95% CI: 3.2 - 10.3) times greater than the risk of white residents aged 18-64 and that white San Francisco residents over the age of 65 were twice as likely (2.0, 95% CI: 1.1 - 4.6) to be vaccinated as Black residents. We also found socioeconomically deprived zipcodes in the city had high probabilities of natural infections and lower vaccination coverage than wealthier zipcodes. InterpretationUsing a platform we created for SARS-CoV-2 serologic data collection in San Francisco, we characterized and quantified the stark disparities in infection rates and vaccine coverage by demographic groups over the first year of the pandemic. While the arrival of the SARS-CoV-2 vaccine has created a light at the end of the tunnel for this pandemic, ongoing challenges in achieving and maintaining equity must also be considered. FundingNIH, NIGMS, Schmidt Science Fellows in partnership with the Rhodes Trust and the Chan Zuckerberg Biohub.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21263139

ABSTRACT

Serosurveys are a key resource for measuring SARS-CoV-2 cumulative incidence. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce adjusted estimates of seroprevalence from raw serosurvey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a post-infection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce adjusted seroprevalence estimates from five large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identify substantial differences between reported and adjusted estimates of over two-fold in the results of some surveys, and provide a tool for practitioners to generate adjusted estimates with pre-set or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21262687

ABSTRACT

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, mild to moderate infections are an important contributor to ongoing transmission. There remains a critical need to identify host immune biomarkers predictive of clinical and virologic outcomes in SARS-CoV-2-infected patients. Leveraging longitudinal samples and data from a clinical trial of Peginterferon Lambda for treatment of SARS-CoV-2 infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom onset. We define early immune signatures, including plasma levels of RIG-I and the CCR2 ligands (MCP1, MCP2 and MCP3), associated with control of oropharyngeal viral load, the degree of symptom severity, and immune memory (including SARS-CoV-2-specific T cell responses and spike (S) protein-binding IgG levels). We found that individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine had similar early immune trajectories to those observed in this natural infection cohort, including the induction of both inflammatory cytokines (e.g. MCP1) and negative immune regulators (e.g. TWEAK). Finally, we demonstrate that machine learning models using 8-10 plasma protein markers measured early within the course of infection are able to accurately predict symptom severity, T cell memory, and the antibody response post-infection.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21251639

ABSTRACT

Serosurveillance studies are critical for estimating SARS-CoV-2 transmission and immunity, but interpretation of results is currently limited by poorly defined variability in the performance of antibody assays to detect seroreactivity over time in individuals with different clinical presentations. We measured longitudinal antibody responses to SARS-CoV-2 in plasma samples from a diverse cohort of 128 individuals over 160 days using 14 binding and neutralization assays. For all assays, we found a consistent and strong effect of disease severity on antibody magnitude, with fever, cough, hospitalization, and oxygen requirement explaining much of this variation. We found that binding assays measuring responses to spike protein had consistently higher correlation with neutralization than those measuring responses to nucleocapsid, regardless of assay format and sample timing. However, assays varied substantially with respect to sensitivity during early convalescence and in time to seroreversion. Variations in sensitivity and durability were particularly dramatic for individuals with mild infection, who had consistently lower antibody titers and represent the majority of the infected population, with sensitivities often differing substantially from reported test characteristics (e.g., amongst commercial assays, sensitivity at 6 months ranged from 33% for ARCHITECT IgG to 98% for VITROS Total Ig). Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on the severity of the initial infection, timing relative to infection, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21252308

ABSTRACT

A detailed understanding of long-term SARS-CoV-2-specific T cell responses and their relationship to humoral immunity and markers of inflammation in diverse groups of individuals representing the spectrum of COVID-19 illness and recovery is urgently needed. Data are also lacking as to whether and how adaptive immune and inflammatory responses differ in individuals that experience persistent symptomatic sequelae months following acute infection compared to those with complete, rapid recovery. We measured SARS-CoV-2-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally up to 9 months following infection in a diverse group of 70 individuals with PCR-confirmed SARS-CoV-2 infection. The participants had varying degrees of initial disease severity and were enrolled in the northern California Long-term Impact of Infection with Novel Coronavirus (LIINC) cohort. Adaptive T cell responses remained remarkably stable in all participants across disease severity during the entire study interval. Whereas the magnitude of the early CD4+ T cell immune response is determined by the severity of initial infection (participants requiring hospitalization or intensive care), pre-existing lung disease was significantly associated with higher long-term SARS-CoV2-specific CD8+ T cell responses, independent of initial disease severity or age. Neutralizing antibody levels were strongly correlated with SARS-CoV-2-specific CD4+ T but not CD8+ T cell responses. Importantly, we did not identify substantial differences in long-term virus-specific T cell or antibody responses between participants with and without COVID-19-related symptoms that persist months after initial infection.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20175786

ABSTRACT

BackgroundThe absence of systematic surveillance for SARS-CoV-2 has curtailed accurate appraisal of transmission intensity. Our objective was to perform case detection of an entire rural community to quantify SARS-CoV-2 transmission using PCR and antibody testing. MethodsWe conducted a cross-sectional survey of the prevalence and cumulative incidence of SARSCoV-2 infection in the rural town of Bolinas, California (population 1,620), four weeks following shelter-in-place orders. Residents and county essential workers were tested between April 20th - 24th, 2020. Prevalence by PCR and seroprevalence combining data from two forms of antibody testing were performed in parallel (Abbott ARCHITECT IgG to nucleocapsid protein and in-house IgG ELISA to the receptor binding domain). ResultsOf 1,891 participants, 1,312 were confirmed Bolinas residents (>80% community ascertainment). Zero participants were PCR positive. Assuming 80% sensitivity, it would have been unlikely to observe these results (p< 0.05) if there were > 3 active infections in the community. Based on antibody results, estimated prevalence of prior infection was 0.16% (95% CrI: 0.02%, 0.46%). Seroprevalence estimates using only one of the two tests would have been higher, with greater uncertainty. The positive predictive value (PPV) of a positive result on both tests was 99.11% (95% CrI: 95.75%, 99.94%), compared to PPV 44.19%-63.32% (95% CrI range 3.25%-98.64%) if only one test was utilized. ConclusionsFour weeks following shelter-in-place, active and prior SARS-CoV-2 infection in a rural Northern California community was extremely rare. In this low prevalence setting, use of two antibody tests increased the PPV and precision of seroprevalence estimates.

SELECTION OF CITATIONS
SEARCH DETAIL
...