Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 37(12): 5724-5754, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786304

ABSTRACT

Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.


Subject(s)
Berberine , Curcumin , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Berberine/therapeutic use , Cell Line, Tumor
2.
In Silico Pharmacol ; 11(1): 8, 2023.
Article in English | MEDLINE | ID: mdl-36999133

ABSTRACT

HCV is a hepatotropic RNA virus recognized for its frequent virulence and fatality worldwide. Despite many vaccine development programs underway, researchers are on a quest for natural bioactive compounds due to their multivalent efficiencies against viral infections, considering which the current research aimed to figure out the target-specificity and therapeutic potentiality of α, ß, and δ subunits of amyrin, as novel bioactive components against the HCV influx mechanism. Initially, the novelty of amyrin subunits was conducted from 203 pharmacophores, comparing their in-silico pharmacokinetic and pharmacodynamic profiles. Besides, the best active site of CD81 was determined following the quantum tunneling algorithm. The molecular dynamic simulation was conducted (100 ns) following the molecular docking steps to reveal the parameters- RMSD (Å); Cα; RMSF (Å); MolSA (Å2); Rg (nm); PSA (Å); SASA (Å2), and the MM-GBSA dG binding scores. Besides, molecular strings of CD81, along with the co-expressed genes, were classified, as responsible for encoding CD81-mediated protein clusters during HCV infection, resulting in the potentiality of amyrins as targeted prophylactics in HCV infection. Finally, in vivo profiling of the oxidative stress marker, liver-specific enzymes, and antioxidant markers was conducted in the DMN-induced mice model, where ß-amyrin scored the most significant values in all aspects.

SELECTION OF CITATIONS
SEARCH DETAIL
...