Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38493478

ABSTRACT

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Subject(s)
Breast Neoplasms , Histones , Humans , Female , Histones/metabolism , Chromatin , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Drug Resistance, Multiple , Breast Neoplasms/genetics
3.
Oncogene ; 43(5): 295-303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081963

ABSTRACT

In eukaryotic cells, ATP generation is generally viewed as the primary function of mitochondria under normoxic conditions. Reactive oxygen species (ROS), in contrast, are regarded as the by-products of respiration, and are widely associated with dysfunction and disease. Important signaling functions have been demonstrated for mitochondrial ROS in recent years. Still, their chemical reactivity and capacity to elicit oxidative damage have reinforced the idea that ROS are the products of dysfunctional mitochondria that accumulate during disease. Several studies support a different model, however, by showing that: (1) limited oxygen availability results in mitochondria prioritizing ROS production over ATP, (2) ROS is an essential adaptive mitochondrial signal triggered by various important stressors, and (3) while mitochondria-independent ATP production can be easily engaged by most cells, there is no known replacement for ROS-driven redox signaling. Based on these observations and other evidence reviewed here, we highlight the role of ROS production as a major mitochondrial function involved in cellular adaptation and stress resistance. As such, we propose a rekindled view of ROS production as a primary mitochondrial function as essential to life as ATP production itself.


Subject(s)
Mitochondria , Oxidative Stress , Humans , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism
4.
Exp Mol Pathol ; 108: 173-182, 2019 06.
Article in English | MEDLINE | ID: mdl-31004600

ABSTRACT

Despite the lack of a complete understanding of the disparities involved, prostate cancer (PCa) has both higher incidence and death rates in African American Men (AAM) relative to those of Caucasian American Men (CAM). MHC class I polypeptide related sequence A (MICA) is an innate immunity protein involved in tumor immunoevasion. Due to a lack of reports of race-specific expression of MICA in PCa, we evaluated MICA expression in patients' tumors and in cell lines from a racially diverse origin. Immunohistochemistry was done on a tissue microarray (TMA) with antibodies against MICA. Tumor MICA mRNA was assessed by data mining using Oncomine and PROGeneV2. Surface MICA and release rate of soluble (s) MICA was evaluated in PCa cell lines originally derived from African American (MDA-PCa-2b) or Caucasian (LNCaP and DU-145) PCa patients. Prostate tumor tissue had a 1.7-fold higher MICA expression relative to normal tissue (p < .0001). MICA immunoreactivity in PCa tissue from AAM was 24% lower (p = .002) compared to CAM. Survival analysis revealed a marginal association of low MICA with poor overall survival (OS) (p = .058). By data mining analysis, a 2.9-fold higher level of MICA mRNA was evidenced in tumor compared to normal tissue (p < .0001). Tumors from AAM had 24% lower levels of MICA mRNA compared to tumors from CAM (p = .038), and poor prognosis was found for patients with lower MICA mRNA (p = .028). By flow cytometry analysis, cell fraction positive for surface MICA was of 3% in MDA-PCa-2b cells, 54% in DU-145 cells, and 67% in LNCaP cells (p < .0001). sMICA was detected in DU-145 and LNCaP cells, but was not detected in MDA-PCa-2b cells. Both LNCaP and DU-145 cells were sensitive to cytolysis mediated by Natural killer (NK) cells. MDA-PCa-2b cells, however were between 1.3-fold at 10:1 Effector:Target (E:T) ratio (p < .0001) and 2-fold at 50:1 E:T ratio (p < .0001) more resistant to NK-mediated cytolysis relative to cells from Caucasian origin. These results suggest that MICA expression may be related to the aggressive nature of PCa. Our findings also demonstrate for the first time that there are variations in MICA expression in the context of racial differences. This study establishes a rationale for further investigation of MICA as a potential race-specific prognostic marker in PCa.


Subject(s)
Black or African American/genetics , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class I/genetics , Prostatic Neoplasms/genetics , White People/genetics , Aged , Cell Line, Tumor , Cell Survival/genetics , Gene Expression Profiling/methods , Histocompatibility Antigens Class I/metabolism , Humans , Male , Middle Aged , Neoplasm Staging , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/metabolism , Survival Analysis , United States
5.
Front Oncol ; 6: 144, 2016.
Article in English | MEDLINE | ID: mdl-27379206

ABSTRACT

Hepatoma upregulated protein (HURP) is a multifunctional protein with clinical promise. This protein has been demonstrated to be a predictive marker for the outcome in high-risk prostate cancer (PCa) patients, besides being a resistance factor in PCa. Although changes in oxygen tension (pO2) are associated with PCa aggressiveness, the role of hypoxia in the regulation of tumor progression genes such as HURP has not yet been described. We hypothesized that pO2 alteration is involved in the regulation of HURP expression in PCa cells. In the present study, PCa cells were incubated at 2% O2 (hypoxia) and 20% O2 (normoxia) conditions. Hypoxia reduced cell growth rate of PCa cells, when compared to the growth rate of cells cultured under normoxia (p < 0.05). The decrease in cell viability was accompanied by fivefold (p < 0.05) elevated rate of vascular endothelial growth factor (VEGF) release. The expression of VEGF and the hypoxia-inducible metabolic enzyme carbonic anhydrase 9 were elevated maximally nearly 61-fold and 200-fold, respectively (p < 0.05). Noted in two cell lines (LNCaP and C4-2B) and independent of the oxygen levels, HURP expression assessed at both mRNA and protein levels was reduced. However, the decrease was more pronounced in cells cultured under hypoxia (p < 0.05). Interestingly, the analysis of patients' specimens by Western blot revealed a marked increase of HURP protein (fivefold), when compared to control (cystoprostatectomy) tissue (p < 0.05). Immunohistochemistry analysis showed an increase in the immunostaining intensity of HURP and the hypoxia-sensitive molecules, hypoxia-inducible factor 1-alpha (HIF-1α), VEGF, and heat-shock protein 60 (HSP60) in association with tumor grade. The data also suggested a redistribution of subcellular localization for HURP and HIF-1α from the nucleus to the cytoplasmic compartment in relation to increasing tumor grade. Analysis of HURP Promoter for HIF-1-binding sites revealed presence of four putative HIF binding sites on the promoter of DLGAP5/HURP gene in the non-translated region upstream from the start codon, suggesting association between HIF-1α and the regulation of HURP protein. Taken together, our findings suggest a modulatory role of hypoxia on the expression of HURP. Additionally our results provide basis for utilization of tumor-associated molecules as predictors of aggressive PCa.

6.
BMC Res Notes ; 8: 687, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581192

ABSTRACT

BACKGROUND: Use of allogeneic cancer cells-based immunotherapy for treatment of established prostate cancer (PCa) has only been marginally effective. One reason for failure could stem from the mismatch of antigenic signatures of vaccine cells and cancer in situ. Hence, it is possible that vaccine cells expressed antigens differently than tumor cells in situ. We hypothesized that cells grown in vitro at low oxygen tension (pO2) provide a better antigen match to tumors in situ and could reveal a more relevant antigenic landscape than cells grown in atmospheric pO2. METHODS: We tested this hypothesis by comparing PCa cells propagated at pO2 = 2 kPa and 20 kPa. To identify potential tumor-associated antigens (TAAs), we prepared PCa cell lysates, resolved them by two-dimensional electrophoresis and immunoblotting using spontaneous antibodies from plasma derived from PCa patients and control subjects. Antibody-labeled spots were analyzed by MALDI-TOF mass spectrometry and validated by ELISA. We selected hypoxia-regulated HSP70 and hnRNP L and hypoxia-independent HSP60 and determined the frequency of plasma samples reacting with these molecules. RESULTS: Frequency of HSP60-reactive plasma was low in healthy controls [1.3 % (1/76)], while it was elevated in PCa patients [13.0 % (7/54); p < 0.05]. These data suggest a humoral immune response to HSP60 in PCa. Levels of autoantibodies to HSP70 did not differ from healthy controls [3.7 % (2/54)] in PCa patients [5.3 % (2/38)]. Similarly, hnRNP L autoantibodies did no differ between healthy controls [6.1 % (3/49)] and PCa patients [5.3 % (2/38)]. CONCLUSIONS: Overall our results suggest the value of hypoxia as a modifier of the cellular and antigenic landscape of PCa cells. By modifying the immune reactivity of PCa cells in culture, manipulation of pO2 can be proposed as a new avenue for improving diagnosis, prognosis and immunotherapy for PCa.


Subject(s)
Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Oxygen/immunology , Prostatic Neoplasms/immunology , Aged , Antigens, Neoplasm/blood , Antigens, Neoplasm/metabolism , Autoantibodies/blood , Autoantibodies/immunology , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Hypoxia , Cell Line, Tumor , Chaperonin 60/immunology , Chaperonin 60/metabolism , Cytokines/immunology , Cytokines/metabolism , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoprotein L/immunology , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Humans , Male , Middle Aged , Oxygen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...