Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Monit ; 10(11): 1319-25, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18974901

ABSTRACT

Ambient ammonia monitoring using Ogawa passive samplers was conducted in the Four Corners area and eastern Oklahoma, USA during 2007. The resulting data will be useful in the multipollutant management of ozone, nitrogen oxides, and visibility (atmospheric regional haze) in the Four Corners area, an area with growing oil/gas production and increasing coal-based power plant construction. The passive monitoring data also add new ambient ammonia concentration information for the U.S. and will be useful to scientists involved in present and future visibility modeling exercises. Three week integrated passive ammonia samples were taken at five sites in the Four Corners area and two sites in eastern Oklahoma from December, 2006 through December, 2007 (January, 2008 for two sites). Results show significantly higher regional background ammonia concentrations in eastern Oklahoma (1.8 parts per billion (ppb) arithmetic mean) compared to the Four Corners area (0.2 ppb arithmetic mean). Annual mean ammonia concentrations for all Four Corners area sites for the 2007 study ranged from 0.2 ppb to 1.5 ppb. Peak ambient ammonia concentrations occurred in the spring and summer in both areas. The passive samplers deployed at the Stilwell, Oklahoma site compared favorably with other passive samplers and a continuous ammonia monitoring instrument.


Subject(s)
Ammonia/analysis , Gases/analysis , Oklahoma , Southwestern United States
2.
Nano Lett ; 6(2): 159-64, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16464027

ABSTRACT

Because of their nanometer sizes and molecular recognition capabilities, biological systems have garnered much attention as vehicles for the directed assembly of nanoscale materials.(1-6) One of the greatest challenges of this research has been to successfully interface biological systems with electronic materials, such as semiconductors and metals. As a means to address some of these issues, Sarikaya, Belcher, and others have used a combinatorial technique called phage display(7-9) to discover new families of peptides that showed binding affinities to various substrates. More recently, Zheng and co-workers used combinatorial DNA libraries to isolate short DNA oligomers (30-90 bases) that could disperse single-walled carbon nanotubes (SWCNT) in water.(10) Through a systematic analysis, they found that short oligonucleotides having repeating sequences of gunanines and thymines (dGdT)(n) could wrap in a helical manner around a CNT with periodic pitch.(11) Although helix formation around SWCNTs having regular pitches is an effective method for dispersing and separating CNTs, the need for specific repeating sequences limits use to non-natural DNA that must be synthesized with optimal lengths of less than 150 bases. In contrast, we demonstrate here that long genomic single-stranded DNA (>>100 bases) of a completely random sequence of bases can be used to disperse CNTs efficiently through the single-stranded DNA's (ssDNA) ability to form tight helices around the CNTs with distinct periodic pitches. Although this process occurs irrespective of the DNA sequence, we show that this process is highly dependent on the removal of complementary strands. We also demonstrate that although the helix pitch-to-pitch distances remain constant down the length of a single CNT, the distances are variable from one DNA-CNT to another. Finally, we report initial work that shows that methods developed to align long dsDNA can be applied in a similar fashion to produce highly dense arrays of aligned ssDNA-CNT hybrids.


Subject(s)
DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Nanotubes, Carbon/chemistry , Gold/chemistry , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Particle Size , Sensitivity and Specificity , Sequence Analysis, DNA/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL