Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(18): 8417-8443, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30215258

ABSTRACT

A series of 3-aryl(pyrrolidin-1-yl)butanoic acids were synthesized using a diastereoselective route, via a rhodium catalyzed asymmetric 1,4-addition of arylboronic acids in the presence of ( R)-BINAP to a crotonate ester to provide the ( S) absolute configuration for the major product. A variety of aryl substituents including morpholine, pyrazole, triazole, imidazole, and cyclic ether were screened in cell adhesion assays for affinity against αvß1, αvß3, αvß5, αvß6, and αvß8 integrins. Numerous analogs with high affinity and selectivity for the αvß6 integrin were identified. The analog ( S)-3-(3-(3,5-dimethyl-1 H-pyrazol-1-yl)phenyl)-4-(( R)-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)butanoic acid hydrochloride salt was found to have very high affinity for αvß6 integrin in a radioligand binding assay (p Ki = 11), a long dissociation half-life (7 h), very high solubility in saline at pH 7 (>71 mg/mL), and pharmacokinetic properties commensurate with inhaled dosing by nebulization. It was selected for further clinical investigation as a potential therapeutic agent for the treatment of idiopathic pulmonary fibrosis.


Subject(s)
Drug Discovery , Idiopathic Pulmonary Fibrosis/drug therapy , Integrins/antagonists & inhibitors , Lung/drug effects , Pyrazoles/chemistry , Animals , Antigens, Neoplasm , Cell Adhesion , Dogs , Humans , Lung/metabolism , Male , Mice , Models, Molecular , Molecular Structure , Protein Conformation , Rats , Rats, Wistar , Structure-Activity Relationship , Tissue Distribution
2.
Br J Pharmacol ; 169(3): 580-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23441756

ABSTRACT

BACKGROUND AND PURPOSE: Nasal sensory nerves play an important role in symptoms associated with rhinitis triggered by environmental stimuli. Here, we propose that TRPV1 is pivotal in nasal sensory nerve activation and assess the potential of SB-705498 as an intranasal therapy for rhinitis. EXPERIMENTAL APPROACH: The inhibitory effect of SB-705498 on capsaicin-induced currents in guinea pig trigeminal ganglion cells innervating nasal mucosa was investigated using patch clamp electrophysiology. A guinea pig model of rhinitis was developed using intranasal challenge of capsaicin and hypertonic saline to elicit nasal secretory parasympathetic reflex responses, quantified using MRI. The inhibitory effect of SB-705498, duration of action and potency comparing oral versus intranasal route of administration were examined. KEY RESULTS: SB-705498 concentration-dependently inhibited capsaicin-induced currents in isolated trigeminal ganglion cells (pIC50 7.2). In vivo, capsaicin ipsilateral nasal challenge (0.03-1 mM) elicited concentration-dependent increases in contralateral intranasal fluid secretion. Ten per cent hypertonic saline initiated a similar response. Atropine inhibited responses to either challenge. SB-705498 inhibited capsaicin-induced responses by ∼50% at 10 mg·kg⁻¹ (oral), non-micronized 10 mg·mL⁻¹ or 1 mg·mL⁻¹ micronized SB-705498 (intranasal) suspension. Ten milligram per millilitre intranasal SB-705498, dosed 24 h prior to capsaicin challenge produced a 52% reduction in secretory response. SB-705498 (10 mg·mL⁻¹, intranasal) inhibited 10% hypertonic saline responses by 70%. CONCLUSIONS AND IMPLICATIONS: The paper reports the development of a guinea pig model of rhinitis. SB-705498 inhibits capsaicin-induced trigeminal currents and capsaicin-induced contralateral nasal secretions via oral and intranasal routes; efficacy was optimized using particle-reduced SB-705498. We propose that TRPV1 is pivotal in initiating symptoms of rhinitis.


Subject(s)
Disease Models, Animal , Nasal Mucosa/drug effects , Parasympathetic Nervous System/drug effects , Parasympatholytics/therapeutic use , Pyrrolidines/therapeutic use , Rhinitis, Allergic, Perennial/drug therapy , TRPV Cation Channels/antagonists & inhibitors , Urea/analogs & derivatives , Administration, Intranasal , Administration, Oral , Animals , Anti-Allergic Agents/administration & dosage , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Capsaicin/administration & dosage , Capsaicin/antagonists & inhibitors , Capsaicin/toxicity , Cells, Cultured , Dose-Response Relationship, Drug , Drug Compounding , Female , Guinea Pigs , Male , Nasal Mucosa/innervation , Nasal Mucosa/metabolism , Parasympathetic Nervous System/metabolism , Parasympathetic Nervous System/pathology , Parasympatholytics/administration & dosage , Parasympatholytics/chemistry , Parasympatholytics/pharmacology , Particle Size , Pyrrolidines/administration & dosage , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Rhinitis, Allergic , Rhinitis, Allergic, Perennial/metabolism , Rhinitis, Allergic, Perennial/pathology , Secretory Pathway/drug effects , Sensory System Agents/administration & dosage , Sensory System Agents/antagonists & inhibitors , Sensory System Agents/toxicity , TRPV Cation Channels/metabolism , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/pathology , Urea/administration & dosage , Urea/chemistry , Urea/pharmacology , Urea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...