Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Mol Biosci ; 10: 1232573, 2023.
Article in English | MEDLINE | ID: mdl-38322710

ABSTRACT

The ability of gut microbial metabolites to influence the host is increasingly recognized. The microbiota extensively metabolizes the three aromatic amino acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon (IFN) signaling and protect from influenza pathogenesis in a murine model. Herein we screened 17 related aromatic amino acid metabolites for effects on IFN signaling in human lung epithelial cells and monocytes alone and in the presence of IFN-ß, influenza, and LPS. While the tryptophan family metabolites reduced IFN signaling in both cell types, the tyrosine and phenylalanine metabolites had varied effects, which were cell-type dependent. Pooled treatment of all these metabolites reduced IFN signaling in both cell types and suggested a tryptophan metabolite effect dominance. Strikingly, when all the metabolites were pooled together, we found reduced influenza recovery in both cell types. RNA sequencing further validated reduced viral loads and decreased IFN signaling. Single gene silencing of significantly upregulated genes identified by RNA sequencing (EGR2, ATP6VD02, SPOCK1, and IL31RA) did not completely abrogate the metabolite induced decrease in IFN signaling. However, these upregulated targets suggested a mechanistic link to TGF-beta signaling. Treatment with a TGF-beta inhibitor and combined targeted gene silencing led to a significant reversal of metabolite induced IFN signaling suppression. Finally, we demonstrated that intranasal administration of these metabolites prior to influenza infection led to reduced animal morbidity, viral titers, and inflammation. Our work implies that microbial metabolites can alter IFN signaling mechanistically through TGF-beta and promote beneficial outcomes during influenza infection.

2.
Front Pediatr ; 10: 953150, 2022.
Article in English | MEDLINE | ID: mdl-36061377

ABSTRACT

Annually influenza causes a global epidemic resulting in 290,000 to 650,000 deaths and extracts a massive toll on healthcare and the economy. Infants and children are more susceptible to infection and have more severe symptoms than adults likely mitigated by differences in their innate and adaptive immune responses. While it is unclear the exact mechanisms with which the young combat influenza, it is increasingly understood that their immune responses differ from adults. Specifically, underproduction of IFN-γ and IL-12 by the innate immune system likely hampers viral clearance while upregulation of IL-6 may create excessive damaging inflammation. The infant's adaptive immune system preferentially utilizes the Th-2 response that has been tied to γδ T cells and their production of IL-17, which may be less advantageous than the adult Th-1 response for antiviral immunity. This differential immune response of the young is considered to serve as a unique evolutionary adaptation such that they preferentially respond to infection broadly rather than a pathogen-specific one generated by adults. This unique function of the young immune system is temporally, and possibly mechanistically, tied to the microbiota, as they both develop in coordination early in life. Additional research into the relationship between the developing microbiota and the immune system is needed to develop therapies effective at combating influenza in the youngest and most vulnerable of our population.

SELECTION OF CITATIONS
SEARCH DETAIL
...