Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Opt Lett ; 47(10): 2430-2433, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561367

ABSTRACT

In this study, we developed a photonic band microscope based on hyperspectral Fourier image spectroscopy. The developed device constructs an infrared photonic band structure from Fourier images for various wavelength obtained by hyperspectral imaging, which make it possible to speedily measure the dispersion characteristics of photonic nanostructures. By applying the developed device to typical photonic crystals and topological photonic crystals, we succeeded in obtaining band structures in good agreement with the theoretical prediction calculated by the finite element method. This device facilitates the evaluation of physical properties in various photonic nanostructures, and is expected to further promote related fields.

2.
Opt Express ; 29(13): 19486-19494, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266057

ABSTRACT

We measured angle-resolved reflection spectra of triangular-lattice photonic crystal slabs fabricated in a silicon-on-insulator wafer in the mid-infrared region. We achieved a high angle-resolution measurement by means of our homemade optical setup integrated in the sample chamber of an FT-IR spectrometer. By examining the reflection peak frequency as a function of the lateral component of the wave vector of the incident light and applying the selection rules expected from the spatial symmetry of electromagnetic eigenmodes in C6v-symmetric structures, we successfully obtained the dispersion relation and the mode symmetry of the photonic crystal slabs, which agreed well with numerical calculations by the finite element method. We also found the redistribution of diffraction loss between A1- and E1-symmetric modes, which was caused by the Dirac-cone formation due to their effective degeneracy.

3.
Nanomaterials (Basel) ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578657

ABSTRACT

We provide an extensive and systematic investigation of exciton dynamics in droplet epitaxial quantum dots comparing the cases of (311)A, (001), and (111)A surfaces. Despite a similar s-shell exciton structure common to the three cases, the absence of a wetting layer for (311)A and (111)A samples leads to a larger carrier confinement compared to (001), where a wetting layer is present. This leads to a more pronounced dependence of the binding energies of s-shell excitons on the quantum dot size and to the strong anti-binding character of the positive-charged exciton for smaller quantum dots. In-plane geometrical anisotropies of (311)A and (001) quantum dots lead to a large electron-hole fine interaction (fine structure splitting (FSS) ∼100 µeV), whereas for the three-fold symmetric (111)A counterpart, this figure of merit is reduced by about one order of magnitude. In all these cases, we do not observe any size dependence of the fine structure splitting. Heavy-hole/light-hole mixing is present in all the studied cases, leading to a broad spread of linear polarization anisotropy (from 0 up to about 50%) irrespective of surface orientation (symmetry of the confinement), fine structure splitting, and nanostructure size. These results are important for the further development of ideal single and entangled photon sources based on semiconductor quantum dots.

4.
Appl Spectrosc ; 75(3): 259-264, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32508118

ABSTRACT

Fourier transform (FT) spectroscopy is a versatile technique for studying the infrared (IR) optical response of solid-, liquid-, and gas-phase samples. In standard Fourier transform infrared (FT-IR) spectrometers, a light beam passing through a Michelson interferometer is focused onto a sample with condenser optics. This design enables us to examine relatively small samples, but the large solid angle of the focused infrared beam makes it difficult to analyze angle-dependent characteristics. Here, we design and construct a high-precision angle-resolved reflection setup compatible with a commercial FT-IR spectrometer. Our setup converts the focused beam into an achromatically collimated beam with an angle dispersion as high as 0.25°. The setup also permits us to scan the incident angle over ∼8° across zero (normal incidence). The beam diameter can be reduced to ∼1 mm, which is limited by the sensitivity of an HgCdTe detector. The small-footprint apparatus is easily installed in an FT-IR sample compartment. As a demonstration of the capability of our reflection setup, we measure the angle-dependent mid-infrared reflectance of two-dimensional photonic crystal slabs and determine the in-plane dispersion relation in the vicinity of the Γ point in momentum space. We observe the formation of photonic Dirac cones, i.e., linear dispersions with an accidental degeneracy at Γ, in an ideally designed sample. Our apparatus is useful for characterizing various systems that have a strong in-plane anisotropy, including photonic crystal waveguides, plasmonic metasurfaces, and molecular crystalline films.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937876

ABSTRACT

Droplet epitaxy allows the efficient fabrication of a plethora of 3D, III-V-based nanostructures on different crystalline orientations. Quantum dots grown on a (311)A-oriented surface are obtained with record surface density, with or without a wetting layer. These are appealing features for quantum dot lasing, thanks to the large density of quantum emitters and a truly 3D lateral confinement. However, the intimate photophysics of this class of nanostructures has not yet been investigated. Here, we address the main optical and electronic properties of s-shell excitons in individual quantum dots grown on (311)A substrates with photoluminescence spectroscopy experiments. We show the presence of neutral exciton and biexciton as well as positive and negative charged excitons. We investigate the origins of spectral broadening, identifying them in spectral diffusion at low temperature and phonon interaction at higher temperature, the presence of fine interactions between electron and hole spin, and a relevant heavy-hole/light-hole mixing. We interpret the level filling with a simple Poissonian model reproducing the power excitation dependence of the s-shell excitons. These results are relevant for the further improvement of this class of quantum emitters and their exploitation as single-photon sources for low-density samples as well as for efficient lasers for high-density samples.

6.
Opt Express ; 28(15): 21601-21615, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32752434

ABSTRACT

The dispersion relation and the angle-resolved reflection spectra of triangular-lattice photonic crystal slabs of the C6v symmetry were examined by the finite element method. The Dirac-cone dispersion relation on the Γ point of the reciprocal space was confirmed. The reflection spectra showed unique selection rules that agreed with the analytical calculation by the k · p perturbation theory. The distortion of the liner dispersion relation of the Dirac cones due to diffraction loss was also reproduced well by the numerical calculation, while we found distortion-free Dirac cones materialized with E2-symmetric modes.

7.
Opt Express ; 28(4): 5548-5554, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121773

ABSTRACT

We introduce the concept of a quasi-triply-degenerate state (QTDS) and demonstrate its relation to an effective zero refractive index (ZRI) in a two-dimensional (2D) square lattice photonic crystal (PC) of all dielectric pillars. A QTDS is characterized by a triple band structure (TBS), wherein two of the bands manifest a linear dispersion around the Γ-point, i.e. a Dirac-like cone, while the third is a flat zero refractive index (ZRI) band with a frequency that is degenerate with one of the other bands. Significantly, we find that while triple degeneracy of the bands is not observed, the three bands approach one another so close that the observable properties of PCs adapted to the QTDS frequency perform as expected of a ZRI material. We closely examine the ZRI band at the Γ-point and show that by varying the PC material and structure parameters, the ZRI band behavior extends over a wide range of dielectric refractive indices enabling materials made with polymeric constituents. Moreover, the ZRI characteristics are robust and tolerant over a range of frequencies. Furthermore, the computational screening we employ to identify QTDS parameters enables the rational design of low-loss 2D ZRI materials for a broad range of photonic applications, including distributing a common reference phase, cloaking and focusing light.

8.
Opt Express ; 28(3): 4194-4203, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122076

ABSTRACT

We materialized the isotropic Dirac-cone dispersion relation in the mid-infrared range by fabricating photonic crystal slabs of the C4v symmetry in SOI (silicon-on-insulator) wafers by electron beam lithography. The dispersion relation was examined by the angle-resolved reflection spectra with our home-made high-resolution apparatus, which showed a good agreement with the dispersion relation and the reflection spectra calculated by the finite element method. The reflection spectra also agreed with the selection rules derived from the spatial symmetry of the Dirac-cone modes, which proved to be a powerful tool for the mode assignment.

9.
J Phys Condens Matter ; 29(38): 385301, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28661406

ABSTRACT

We show by the first-order perturbation theory and the configuration interaction method that the Coulomb interaction in quantum rings mixes electron-hole pair states with the same total angular momentum, which makes it difficult to observe a clear excitonic Aharonov-Bohm (A-B) effect. To avoid this situation, we propose the use of a combined structure of a quantum dot on the top of a quantum ring with an applied static electric field. Under moderate experimental conditions with respect to the applied electric and magnetic fields, we show that we can observe the excitonic A-B effect due to the reduction of the Coulomb interaction and an increase in the difference between the average radii of the electron and hole trajectories.

10.
Opt Express ; 25(9): 9986-9998, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468377

ABSTRACT

We formulated an efficient numerical method for the dispersion relation of polaritonic channel waveguides and applied it to ZnO (wurzite) and ZnSe (zinc-blende) waveguides. The dispersion relation obtained by our calculations is distinct from that of bulk crystals. We found that important contributions to light propagation were made by two modes in the frequency range below the transverse exciton frequency, which was confirmed by comparing the group index obtained by our calculation with Fabry-Perot interference experiments. The numerical error of our method was estimated to be less than 1 % by comparing it with an analytical solution for a model structure. Our calculations predict an extremely small bending loss, which was estimated from the spatial decay rate of evanescent waves outside of the waveguide.

11.
Nano Lett ; 16(8): 5191-6, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27436631

ABSTRACT

Lanthanoid series are unique in atomic elements. One reason is because they have 4f electronic states forbidding electric-dipole (ED) transitions in vacuum and another reason is because they are very useful in current-day optical technologies such as lasers and fiber-based telecommunications. Trivalent Er ions are well-known as a key atomic element supporting 1.5 µm band optical technologies and also as complex photoluminescence (PL) band deeply mixing ED and magnetic-dipole (MD) transitions. Here we show large and selective enhancement of ED and MD radiations up to 83- and 26-fold for a reference bulk state, respectively, in experiments employing plasmonic nanocavity arrays. We achieved the marked PL enhancement by use of an optimal design for electromagnetic (EM) local density of states (LDOS) and by Er-ion doping in deep subwavelength precision. We moreover clarify the quantitative contribution of ED and MD radiations to the PL band, and the magnetic Purcell effect in the PL-decay temporal measurement. This study experimentally demonstrates a new scheme of EM-LDOS engineering in plasmon-enhanced photonics, which will be a key technique to develop loss-compensated and active plasmonic devices.

12.
Chem Commun (Camb) ; 51(57): 11470-3, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26088784

ABSTRACT

We have experimentally shown significant suppression of metal-induced fluorescence (FL) quenching on plasmo-photonic metasurfaces by incorporating a self-assembled monolayer (SAM) of sub-nm thickness. The FL signals of rhodamine dye molecules have been several-ten-fold enhanced by introducing the SAM, in comparison with the previous configuration contacting molecules and metal surfaces.


Subject(s)
Fluorescent Dyes/chemistry , Gold/chemistry , Nanostructures/chemistry , Rhodamines/chemistry , Fluorescence , Photons , Sulfhydryl Compounds/chemistry , Surface Properties
13.
Sci Technol Adv Mater ; 16(3): 035005, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27877806

ABSTRACT

Packaged dual-band metasurface thermal emitters integrated with a resistive membrane heater were manufactured by ultraviolet (UV) nanoimprint lithography followed by monolayer lift-off based on a soluble UV resist, which is mass-producible and cost-effective. The emitters were applied to infrared CO2 sensing. In this planar Au/Al2O3/Au metasurface emitter, orthogonal rectangular Au patches are arrayed alternately and exhibit nearly perfect blackbody emission at 4.26 and 3.95 µm necessary for CO2 monitoring at the electric power reduced by 31%. The results demonstrate that metasurface infrared thermal emitters are almost ready for commercialization.

14.
Sci Technol Adv Mater ; 14(1): 015007, 2013 Feb.
Article in English | MEDLINE | ID: mdl-27877565

ABSTRACT

Core-level and valence band spectra of In x Ga1-x N films were measured using hard x-ray photoemission spectroscopy (HX-PES). Fine structure, caused by the coupling of the localized Ga 3d and In 4d with N 2s states, was experimentally observed in the films. Because of the large detection depth of HX-PES (∼20 nm), the spectra contain both surface and bulk information due to the surface band bending. The In x Ga1-x N films (x = 0-0.21) exhibited upward surface band bending, and the valence band maximum was shifted to lower binding energy when the mole fraction of InN was increased. On the other hand, downward surface band bending was confirmed for an InN film with low carrier density despite its n-type conduction. Although the Fermi level (EF) near the surface of the InN film was detected inside the conduction band as reported previously, it can be concluded that EF in the bulk of the film must be located in the band gap below the conduction band minimum.

15.
Opt Express ; 21(25): 31420-9, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514716

ABSTRACT

We theoretically examine the bending loss of organic molecular-crystal nanofibers for which the light propagation is carried out by optically anisotropic exciton polaritons. Previous experimental studies showed that the leakage of light for bent thiacyanine nanofibers was negligibly small even for the radius of curvature of several microns. We formulate a finite-difference frequency-domain method stabilized by a conformal transformation to calculate the bending loss as a function of the radius of curvature and the propagation frequency. The present method is applied to the thiacyanine nanofiber and numerical results that support the previous experimental observation are obtained. The present study clearly shows that the polariton nanofiber gives a novel possibility for bent waveguides to fabricate optical microcircuits and interconnection that cannot be attained by the conventional waveguides based on the index guiding.

16.
Opt Express ; 20(22): 25181-94, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-23187284

ABSTRACT

We formulate a degenerate perturbation theory for the vector electromagnetic field of periodic structures and apply it to the problem of the creation of Dirac cones in the Brillouin-zone center by accidental degeneracy of two modes. We derive a necessary condition by which we can easily select candidates of mode combinations that enable the creation of the Dirac cone. We analyze the structure of a matrix that determines the first-order correction to eigen frequencies by examining its transformation by symmetry operations. Thus, we can obtain the analytical solution of dispersion curves in the vicinity of the zone center and can judge the presence of the Dirac cone. All these findings clearly show that the presence or absence of the Dirac cone in the zone center is solely determined by the spatial symmetry of the two modes.

17.
Opt Express ; 20(9): 9925-39, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22535085

ABSTRACT

It is shown by tight-binding approximation and group theory that a double Dirac cone, or a pair of two identical Dirac cones, of the electromagnetic dispersion relation can be created in the Brillouin zone center by accidental degeneracy of E(1) and E(2) modes in triangular-lattice metamaterials of C(6v) symmetry. The Dirac point thus obtained is equivalent to a zero-index system, so we can expect unique optical propagation phenomena such as constant-phase waveguides and lenses of arbitrary shapes. Zitterbewegung is also expected without disturbance due to an auxiliary quadratic dispersion surface, which is present for other combinations of mode symmetries to materialize the Dirac cones. To the best of the author's knowledge, this is the first prediction of the presence of a double Dirac cone in metamaterials.


Subject(s)
Electromagnetic Fields , Manufactured Materials , Models, Theoretical , Refractometry/methods , Scattering, Radiation , Computer Simulation
18.
Opt Express ; 20(4): 3898-917, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418147

ABSTRACT

It is shown by analytical calculation based on the tight-binding approximation that the isotropic Dirac cone in the Brillouin zone center can be created in two- and three-dimensional periodic metamaterials by accidental degeneracy of two modes. In the case of two dimensions, the combination of a doubly degenerate E mode and a non-degenerate A1 mode of the square lattice of the C4v symmetry is examined. For three dimensions, the combination of a triply degenerate T1u mode and a non-degenerate A1g mode of the cubic lattice of the Oh symmetry is examined. The secular equation of the electromagnetic field is derived and solved with detailed analysis of electromagnetic transfer integrals by group theory. This is the first theoretical prediction of the presence of the Dirac cone in the three-dimensional periodic structure.

19.
Opt Express ; 19(15): 13899-921, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934751

ABSTRACT

Dispersion curves of metamaterial steerable antennas composed of two-dimensional arrays of metallic unit structures with the C4v and C6v symmetries are calculated both qualitatively by the tight-binding approximation and quantitatively by the finite-difference time-domain method. Special attention is given to the case of eigenmodes of the E symmetry of the C4v point group and those of the E1 and E2 symmetries of the C6v point group, since they are doubly degenerate on the Γ point of the Brillouin zone so that they naturally satisfy the steerability condition. We show that their dispersion curves have quadratic dependence on the wave vector in the vicinity of the Γ point. To get a linear dispersion, which is advantageous for steerable antennas, we propose a method of controlled symmetry reduction. The present theory is an extension of our previous one [Opt. Express 18, 27371 (2010)] to two-dimensional systems, for which we can achieve the deterministic degeneracy due to symmetry and the controlled symmetry reduction becomes available. This design of metamaterial steerable antennas is advantageous in the optical frequency.

20.
Rev Sci Instrum ; 82(7): 073103, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806168

ABSTRACT

We report on the implementation of a scanning Fabry-Pérot interferometer for photoluminescence spectroscopy investigation. We choose a conveniently small reflectivity of the two planar semitransparent mirrors which, in spite of a moderate cavity finesse, ensures a good mechanical stability over a long time. We also exploit the large tuneability of the cavity length (i.e., of the free spectral range) for changing the spectral resolution over two order of magnitude (from ~300 µeV to ~4 µeV in full width at half maximum). Such a characteristic easily allows to scan both sharp and broad luminescence bands. We test our Fabry-Pérot interferometer on sharp photoluminescence lines resulting from excitonic recombination in self-assembled GaAs quantum dots. We demonstrate the ability of our system to resolve linewidth as small as 4 µeV.

SELECTION OF CITATIONS
SEARCH DETAIL
...