Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 106(3): 859-865, 2017 03.
Article in English | MEDLINE | ID: mdl-27986291

ABSTRACT

Valproic acid is widely used as an antiepileptic agent. Valproic acid is in liquid phase while sodium valproate is in solid phase at room temperature. Sodium valproate is hard to manufacture because of its hygroscopic and deliquescent properties. To improve these, cocrystal and salt screening for valproic acid was employed in this study. Two solid salt forms, l-arginine valproate and l-lysine valproate, were obtained and characterized. By using dynamic vapor sorption method, the critical relative humidity of sodium valproate, l-arginine valproate, and l-lysine valproate were measured. Critical relative humidity of sodium valproate was 40%, of l-lysine valproate was 60%, and of l-arginine valproate was 70%. Single-crystal X-ray structure determination of l-arginine valproate was employed. l-Lysine valproate was of low diffraction quality, and l-arginine valproate formed a 1:1 salt. Crystal l-arginine valproate has a disorder in the methylene carbon chain that creates 2 conformations. The carboxylate group of valproic acid is connected to the amino group of l-arginine. Crystalline morphologies were calculated from its crystal structure. Adsorption of water molecules to crystal facets was simulated by Material Studio. When comparing adsorption energy per site of these salts, sodium valproate is more capable of adsorption of water molecule than l-arginine valproate.


Subject(s)
Arginine/chemistry , Valproic Acid/chemistry , Wettability , X-Ray Diffraction/methods , Crystallization/methods , Crystallography, X-Ray/methods , Water/chemistry
2.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 1): 48-50, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25705448

ABSTRACT

In the title compound, C7H9NO5, alternative name N-carb-oxy-l-glutamic anhydride γ-methyl ester, the oxazolidine ring is essentially planar with a maximum deviation of 0.020 (3) Å. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds between the imino group and the carbonyl O atom in the methyl ester group, forming a tape structure along the a-axis direction. The tapes are linked by C-H⋯O inter-actions into a sheet parallel to the ac plane. The tapes are also stacked along the b axis with short contacts between the oxazolidine rings [C⋯O contact distances = 2.808 (4)-3.060 (4) Å], so that the oxazolidine rings are arranged in a layer parallel to the ab plane. This arrangement of the oxazolidine rings is very preferable for the polymerization of the title compound in the solid state.

3.
Chem Sci ; 6(4): 2187-false, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-29163877

ABSTRACT

In this study, we report the interconvertible tetracolored solid state photoluminescence of gold(i) isocyanide complex 2 upon various external stimuli through solid state structural changes. Soaking complex 2 in acetone yields blue emission as a result of the formation of 2B. The subsequent removal of acetone yields 2G through a crystal-to-crystal phase transition, which exhibits green emission. This green-emitting solid 2G exhibits stepwise emission color changes to yellow and then to orange upon mechanical stimulation by ball-milling, which corresponds to the formation of 2Y and 2O, respectively. 2B could be recovered upon the addition of acetone to 2G, 2Y, and 2O. Thus, these four emitting solid states of 2 can be switched between repeatedly by means of acetone soaking and the application of mechanical stimulation. Importantly, single crystal and powder X-ray diffraction (PXRD) studies fully show the detailed molecular arrangements of 2B, 2G, and 2Y. This is the first mechanochromic compound to show interconvertible four color emission in the solid state. We also present the first example of using PXRD measurements and the Rietveld refinement technique for the structural analysis of a ground powder in a luminescence mechanochromism study. We obtained complete molecular-level structural information of the crystalline states of 2B, 2G, 2Y, and 2O. In comparison with a more solvophobic analogue 1, we suggest that the weak interaction of 2 with acetone in the solid state would allow a solvent inclusion/release mode, which is an important structural factor for the unprecedented multicolor mechanochromic luminescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...