Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38949590

ABSTRACT

Structures formed by dense CO adsorption layers can provide information about the balance between molecule-surface and molecule-molecule interactions. However, in many cases, the structure models are not clear. Using density functional theory (DFT) and scanning tunneling microscopy (STM), we have investigated the high-coverage CO layer on the Ru(0001) surface. Previous investigations by low-energy electron diffraction (LEED) and vibrational spectroscopy led to conflicting results about the structure. In the present study, 88 models with coverages between 0.58 and 0.77 monolayers have been analyzed by DFT. The most stable structures consist of small, compact CO clusters with an internal pseudo 1×1 structure. The CO molecules in the cluster centers occupy on-top sites in an upright position, whereas the molecules farther outside are slightly shifted from these sites and tilted outward. STM data of the CO-saturated surface at low temperatures, corresponding to a coverage of 0.66 monolayers, show a quasi-hexagonal pattern of features with an internal hexagonal fine structure. Simulated images based on the cluster model agree with the experimental data. It is concluded that the high-coverage CO layer consists of the close-packed clusters predicted by DFT as the most stable structure elements. In the experiment, the sizes and shapes of the clusters vary. However, the arrangement is not random but follows defined tiling rules. The structure remains ordered, almost up to room temperature. The LEED data are re-interpreted on the basis of the Fourier transforms of the STM data, solving the long-standing conflict about the structure.

2.
ACS Appl Mater Interfaces ; 16(25): 32169-32188, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38862108

ABSTRACT

Offering a compelling combination of safety and cost-effectiveness, water-in-salt (WiS) electrolytes have emerged as promising frontiers in energy storage technology. Still, there is a strong demand for research and development efforts to make these electrolytes ripe for commercialization. Here, we present a first-principles-based molecular dynamics (MD) study addressing in detail the properties of a sodium triflate WiS electrolyte for Na-ion batteries. We have developed a workflow based on a machine learning (ML) potential derived from ab initio MD simulations. As ML potentials are typically restricted to the interpolation of the data points of the training set and have hardly any predictive properties, we subsequently optimize a classical force field based on physics principles to ensure broad applicability and high performance. Performing and analyzing detailed MD simulations, we identify several very promising properties of the sodium triflate as a WiS electrolyte but also indicate some potential stability challenges associated with its use as a battery electrolyte.

3.
J Chem Theory Comput ; 19(17): 5712-5730, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37528639

ABSTRACT

Accurate modeling of highly concentrated aqueous solutions, such as water-in-salt (WiS) electrolytes in battery applications, requires proper consideration of polarization contributions to atomic interactions. Within the force field molecular dynamics (MD) simulations, the atomic polarization can be accounted for at various levels. Nonpolarizable force fields implicitly account for polarization effects by incorporating them into their van der Waals interaction parameters. They can additionally mimic electron polarization within a mean-field approximation through ionic charge scaling. Alternatively, explicit polarization description methods, such as the Drude oscillator model, can be selectively applied to either a subset of polarizable atoms or all polarizable atoms to enhance simulation accuracy. The trade-off between simulation accuracy and computational efficiency highlights the importance of determining an optimal level of accounting for atomic polarization. In this study, we analyze different approaches to include polarization effects in MD simulations of WiS electrolytes, with an example of a Na-OTF solution. These approaches range from a nonpolarizable to a fully polarizable force field. After careful examination of computational costs, simulation stability, and feasibility of controlling the electrolyte properties, we identify an efficient combination of force fields: the Drude polarizable force field for salt ions and non-polarizable models for water. This cost-effective combination is sufficiently flexible to reproduce a broad range of electrolyte properties, while ensuring simulation stability over a relatively wide range of force field parameters. Furthermore, we conduct a thorough evaluation of the influence of various force field parameters on both the simulation results and technical requirements, with the aim of establishing a general framework for force field optimization and facilitating parametrization of similar systems.

4.
J Phys Chem Lett ; 14(9): 2354-2363, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36848227

ABSTRACT

The theoretical modeling of metal/water interfaces centers on an appropriate configuration of the electric double layer (EDL) under grand canonical conditions. In principle, ab initio molecular dynamics (AIMD) simulations would be the appropriate choice for treating the competing water-water and water-metal interactions and explicitly considering the atomic and electronic degrees of freedom. However, this approach only allows simulations of relatively small canonical ensembles over a limited period (shorter than 100 ps). On the other hand, computationally efficient semiclassical approaches can treat the EDL model based on a grand canonical scheme by averaging the microscopic details. Thus, an improved description of the EDL can be obtained by combining AIMD simulations and semiclassical methods based on a grand canonical scheme. By taking the Pt(111)/water interface as an example, we compare these approaches in terms of the electric field, water configuration, and double-layer capacitance. Furthermore, we discuss how the combined merits of the approaches can contribute to advances in EDL theory.

5.
Chem Rev ; 122(12): 10746-10776, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35100505

ABSTRACT

Structures and processes at water/metal interfaces play an important technological role in electrochemical energy conversion and storage, photoconversion, sensors, and corrosion, just to name a few. However, they are also of fundamental significance as a model system for the study of solid-liquid interfaces, which requires combining concepts from the chemistry and physics of crystalline materials and liquids. Particularly interesting is the fact that the water-water and water-metal interactions are of similar strength so that the structures at water/metal interfaces result from a competition between these comparable interactions. Because water is a polar molecule and water and metal surfaces are both polarizable, explicit consideration of the electronic degrees of freedom at water/metal interfaces is mandatory. In principle, ab initio molecular dynamics simulations are thus the method of choice to model water/metal interfaces, but they are computationally still rather demanding. Here, ab initio simulations of water/metal interfaces will be reviewed, starting from static systems such as the adsorption of single water molecules, water clusters, and icelike layers, followed by the properties of liquid water layers at metal surfaces. Technical issues such as the appropriate first-principles description of the water-water and water-metal interactions will be discussed, and electrochemical aspects will be addressed. Finally, more approximate but numerically less demanding approaches to treat water at metal surfaces from first-principles will be briefly discussed.


Subject(s)
Molecular Dynamics Simulation , Water , Adsorption , Metals/chemistry , Water/chemistry
6.
Angew Chem Int Ed Engl ; 59(15): 6182-6186, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-31919982

ABSTRACT

CO adlayers on Pt(111) electrode surfaces are an important electrochemical system and of great relevance to electrocatalysis. The potential-dependent structure and dynamics of these adlayers are complex and still controversial, especially in the CO pre-oxidation regime. We here employ in situ high-speed scanning tunneling microscopy for studying the surface phase behavior in CO-saturated 0.1 m H2 SO4 on the millisecond time scale. At potentials near the onset of CO pre-oxidation local fluctuations in the (2×2)-CO adlayer are observed, which increase towards more positive potentials. Above 0.20 V (vs. Ag/AgCl), this leads to an adlayer where COad apparently reside on every top site, but still exhibit a (2×2) superstructure modulation. We interpret this observation as a dynamic effect, caused by a small number of highly mobile point defects in the (2×2)-CO adlayer. As shown by density functional theory calculations, the CO lattice near such defects relaxes into a local (1×1) arrangement, which can rapidly propagate across the surface. This scenario, where a static (2×2) COad sublattice coexists with a highly dynamic sublattice of partially occupied top sites, explains the pronounced COad surface mobility during electrooxidation.

7.
Phys Chem Chem Phys ; 22(19): 10431-10437, 2020 May 20.
Article in English | MEDLINE | ID: mdl-31976502

ABSTRACT

A structural analysis of solvating water layers on a Pt(111) electrode has been performed based on extensive ab initio molecular dynamics simulations. We have emulated different electrochemical conditions by varying the concentration of hydrogen ions in the water layers, which effectively corresponds to a variation in the electrode potential. We present a detailed analysis of the arrangement and orientation of the water molecules and also address their mobility in the solvation layer.

8.
J Chem Theory Comput ; 15(5): 3250-3259, 2019 May 14.
Article in English | MEDLINE | ID: mdl-30964999

ABSTRACT

Over the past years, density functional theory (DFT) became a widely approved and successful method for calculating properties of various materials and molecules. Especially suited for systems with delocalized electrons like metals, the efficient treatment of the van der Waals interaction remained a problem for DFT functionals within the generalized gradient approximation (GGA). Combining Grimme's D3 correction with the RPBE functional and using a previously published data set, we show that this yields a functional that is well-suited for an accurate and balanced description of adsorption energies. The RPBE-D3 approach performs comparably to higher-level methods such as the BEEF-vdW and the SW-R88 method. Even for oxide systems, which traditionally are not well-described by GGA functionals, RPBE-D3 leads to satisfactorily results when combined with the +U approach, as demonstrated with respect to the energetic ordering of the three TiO2 polymorphs rutile, anatase, and brookite.

9.
Science ; 363(6428): 715-718, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30765561

ABSTRACT

How particles can move on a catalyst surface that, under the conditions of an industrial process, is highly covered by adsorbates and where most adsorption sites are occupied has remained an open question. We have studied the diffusion of O atoms on a fully CO-covered Ru(0001) surface by means of high-speed/variable-temperature scanning tunneling microscopy combined with density functional theory calculations. Atomically resolved trajectories show a surprisingly fast diffusion of the O atoms, almost as fast as on the clean surface. This finding can be explained by a "door-opening" mechanism in which local density fluctuations in the CO layer intermittently create diffusion pathways on which the O atoms can move with low activation energy.

10.
J Chem Phys ; 149(8): 084705, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30193475

ABSTRACT

The description of electrode-electrolyte interfaces is based on the concept of the formation of an electric double layer. This concept was derived from continuum theories extended by introducing point charge distributions. Based on ab initio molecular dynamics simulations, we analyze the electric double layer in an approach beyond the point charge scheme by instead assessing charge polarizations at electrochemical metal-water interfaces from first principles. We show that the atomic structure of water layers at room temperature leads to an oscillatory behavior of the averaged electrostatic potential. We address the relation between the polarization distribution at the interface and the extent of the electric double layer and subsequently derive the electrode potential from the charge polarization.

11.
J Chem Phys ; 149(24): 244105, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30599720

ABSTRACT

We report on a many-electron wavefunction theory study for the reaction energetics of hydrogen dissociation on the Si(100) surface. We demonstrate that quantum chemical wavefunction based methods using periodic boundary conditions can predict chemically accurate results for the activation barrier and the chemisorption energy in agreement with experimental findings. These highly accurate results for the reaction energetics enable a deeper understanding of the underlying physical mechanism and make it possible to benchmark widely used density functional theory methods.

12.
J Chem Phys ; 144(19): 194701, 2016 May 21.
Article in English | MEDLINE | ID: mdl-27208959

ABSTRACT

The structure of a liquid water layer on Pt(111) has been studied by ab initio molecular dynamics simulations based on periodic density functional theory calculations. First the reliability of the chosen exchange-correlation function has been validated by considering water clusters, bulk ice structures, and bulk liquid water, confirming that the dispersion corrected RPBE-D3/zero functional is a suitable choice. The simulations at room temperature yield that a water layer that is six layers thick is sufficient to yield liquid water properties in the interior of the water film. Performing a statistical average along the trajectory, a mean work function of 5.01 V is derived, giving a potential of zero charge of Pt(111) of 0.57 V vs. standard hydrogen electrode, in good agreement with experiments. Therefore we propose the RPBE-D3/zero functional as the appropriate choice for first-principles calculations addressing electrochemical aqueous electrolyte/metal electrode interfaces.

13.
J Chem Phys ; 142(23): 234107, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-26093550

ABSTRACT

We present a computational study of the interface of a Pt electrode and an aqueous electrolyte employing semi-empirical dispersion corrections and an implicit solvent model within first-principles calculations. The electrode potential is parametrized within the computational hydrogen electrode scheme. Using one explicit layer, we find that the most realistic interface configuration is a water bilayer in the H-up configuration. Furthermore, we focus on the contribution of the dispersion interaction and the presence of water on H, O, and OH adsorption energies. This study demonstrates that the implicit water scheme represents a computationally efficient method to take the presence of an aqueous electrolyte interface with a metal electrode into account.

14.
ACS Nano ; 8(12): 12346-55, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25406069

ABSTRACT

We determine the detailed differences in geometry and band structure between wurtzite (Wz) and zinc blende (Zb) InAs nanowire (NW) surfaces using scanning tunneling microscopy/spectroscopy and photoemission electron microscopy. By establishing unreconstructed and defect-free surface facets for both Wz and Zb, we can reliably measure differences between valence and conduction band edges, the local vacuum levels, and geometric relaxations to the few-millielectronvolt and few-picometer levels, respectively. Surface and bulk density functional theory calculations agree well with the experimental findings and are used to interpret the results, allowing us to obtain information on both surface and bulk electronic structure. We can thus exclude several previously proposed explanations for the observed differences in conductivity of Wz-Zb NW devices. Instead, fundamental structural differences at the atomic scale and nanoscale that we observed between NW surface facets can explain the device behavior.

15.
Nanotechnology ; 25(14): 145204, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24632943

ABSTRACT

With the help of density functional calculations using the HSE and PBE functionals, it is shown that incorporation of nitrogen into ZnO nanoparticles is energetically less costly compared to ZnO bulk, due to charge transfer between Zn dangling bonds and the NO impurity. Neutral NO results after full passivation of the doped nanoparticles by a treatment with atomic hydrogen. A nanocomposite made from such ZnO particles could show thermally activated p-type hopping conductivity.

16.
J Chem Phys ; 138(23): 234702, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23802971

ABSTRACT

Hybrid functionals and empirical correction schemes are compared to conventional semi-local density functional theory (DFT) calculations in order to assess the predictive power of these methods concerning the formation energy and the charge transfer level of impurities in the wide-gap semiconductor ZnO. While the generalized gradient approximation fails to describe the electronic structure of the N impurity in ZnO correctly, methods that widen the band gap of ZnO by introducing additional non-local potentials yield the formation energy and charge transfer level of the impurity in reasonable agreement with hybrid functional calculations. Summarizing the results obtained with different methods, we corroborate earlier findings that the formation of substitutional N impurities at the oxygen site in ZnO from N atoms is most likely slightly endothermic under oxygen-rich preparation conditions, and introduces a deep level more than 1 eV above the valence band edge of ZnO. Moreover, the comparison of methods elucidates subtle differences in the predicted electronic structure, e.g., concerning the orientation of unoccupied orbitals in the crystal field and the stability of the charged triplet state of the N impurity. Further experimental or theoretical analysis of these features could provide useful tests for validating the performance of DFT methods in their application to defects in wide-gap materials.

17.
Chemphyschem ; 13(15): 3467-71, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-22887698

ABSTRACT

Any technologically important chemical reaction typically involves a number of different elementary reaction steps consisting of bond-breaking and bond-making processes. Usually, one assumes that such complex chemical reactions occur in a step-wise fashion where one single bond is made or broken at a time. Using first-principles calculations based on density functional theory we show that the barriers of rate-limiting steps for technologically relevant surface reactions are significantly reduced if concerted reaction mechanisms are taken into account.

18.
Nano Lett ; 12(2): 943-8, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22268683

ABSTRACT

The energetics of Ga, As, and GaAs species on the Au(111) surface (employed as a model for Au nanoparticles) is investigated by means of density functional calculations. Apart from formation of the compound Au(7)Ga(2), Ga is found to form a surface alloy with gold with comparable ΔH ~ -0.5 eV for both processes. Dissociative adsorption of As(2) is found to be exothermic by more than 2 eV on both clean Au(111) and AuGa surface alloys. The As-Ga species formed by reaction of As with the surface alloy is sufficiently stable to cover the surface of an Au particle in vacuo in contact with a GaAs substrate. The results of the calculations are interpreted in the context of Au-catalyzed growth of GaAs nanowires. We argue that arsenic is supplied to the growth zone of the nanowire mainly by impingement of molecules on the gold particle and identify a regime of temperatures and As(2) partial pressures suitable for Au-catalyzed nanowire growth in molecular beam epitaxy.


Subject(s)
Arsenicals/chemistry , Gallium/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Quantum Theory , Catalysis
19.
J Chem Phys ; 135(11): 114506, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21950870

ABSTRACT

The relaxation of vibrational energy in the H and D stretch modes has been studied on the graphene surface using ab initio calculations. The dissipation of the vibrational energy stored in the stretching modes proceeds through vibration-phonon coupling, while the dissipation through electronic excitations makes only minor contributions. Recently, we reported the fast relaxation of the H stretch energy on graphene [S. Sakong and P. Kratzer, J. Chem. Phys. 133, 054505 (2010)]. Interestingly, we predict the lifetime of the D stretch to be markedly longer compared to the relaxation of the H stretch. This is unexpected since the vibrational amplitudes at carbon atoms in the joint C-D vibrational modes are larger than in the joint C-H modes, due to the mass ratio m(D)/m(C) > m(H)/m(C). However, the vibrational relaxation rate for the D stretch is smaller than for the H stretch, because the energy is dissipated to an acoustic phonon of graphene in the case of C-D rather than an optical phonon as is the case in C-H, and hence, the corresponding phonon density of states is lower in the C-D case. To rationalize our findings, we propose a general scheme for estimating vibrational lifetimes of adsorbates based on four factors: the density of states of the phonons that mediates the transitions, the vibration-phonon coupling strength, the anharmonic coupling between local modes, and the number of quanta involved in the transitions. Mainly the first two of these factors are responsible for the differences in the lifetimes of the C-H and C-D stretches. The possible role of the other factors is illustrated in the context of vibrational lifetimes in other recently studied systems.

20.
J Chem Phys ; 133(5): 054505, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20707540

ABSTRACT

Density functional theory (DFT) calculations are used to determine the vibrational modes of hydrogen adsorbed on graphene in the low-coverage limit. Both the calculated adsorption energy of a H atom of 0.8 eV and calculated C-H stretch vibrational frequency of 2552 cm(-1) are unusually low for hydrocarbons, but in agreement with data from electron energy loss spectroscopy on hydrogenated graphite. The clustering of two adsorbed H atoms observed in scanning tunneling microscopy images shows its fingerprint also in our calculated spectra. The energetically preferred adsorption on different sublattices correlates with a blueshift of the C-H stretch vibrational modes in H adatom clusters. The C-H bending modes are calculated to be in the 1100 cm(-1) range, resonant with the graphene phonons. Moreover, we use our previously developed methods to calculate the relaxation of the C-H stretch mode via vibration-phonon interaction, using the Born-Oppenheimer surface for all local modes as obtained from the DFT calculations. The total decay rate of the H stretch into other H vibrations, thereby creating or annihilating one graphene phonon, is determined from Fermi's golden rule. Our calculations using the matrix elements derived from DFT calculations show that the lifetime of the H stretch mode on graphene is only several picoseconds, much shorter than on other semiconductor surfaces such as Ge(001) and Si(001).


Subject(s)
Carbon/chemistry , Computer Simulation , Hydrogen/chemistry , Adsorption , Surface Properties , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...