Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(11): 8038-8050, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437220

ABSTRACT

Liquid metal (LM) particles can serve as initiators, functional fillers, and cross-linkers for hydrogels. Herein, we show that cellulose nanocrystals (CNCs) stabilize LM particles in aqueous solutions, such as those used to produce hydrogels. The CNC-coated LM particles initiate free-radical polymerization to form poly(acrylic acid) (PAA) hydrogel with exceptional properties─stretchability ∼2000%, excellent toughness ∼1.8 MJ/m3, mechanical resilience, and efficient self-healing─relative to cross-linked PAA networks polymerized using conventional molecular initiators. FTIR spectroscopy, rheology, and mechanical measurements suggest that physical bonds between PAA and both Ga3+ and LM-CNC particles contribute to the excellent mechanical properties. The gels are used to sense a wide range of strains, such as those associated with human motion, via changes in resistance through the gel. The sensitivity at low strains enables monitoring subtle physiological signals, such as pulse. Without significantly compromising the toughness, soaking the gels in salt solution brings about high ionic conductivity (3.8 S/m), enabling them to detect touch via piezoionic principles; the anions in the gel have higher mobility than cations, resulting in significant charge separation (current ∼30 µA, ∼10 µA/cm2) through the gel in response to touch. These attractive properties are promising for wearable sensors, energy harvesters, and self-powered ionic touch panels.

2.
Chem Rev ; 124(3): 860-888, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38291556

ABSTRACT

Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.

3.
Biomed Microdevices ; 25(3): 31, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37584876

ABSTRACT

Local field potentials, the extracellular electrical activities from brain regions, provide clinically relevant information about the status of neurophysiological conditions, including epilepsy. In this study, a 13-channel silicon-based single-shank microelectrode array (MEA) was designed and fabricated to record local field potentials (LFPs) from the different depths of a rat's brain. A titanium/gold layer was patterned as electrodes on an oxidized silicon substrate, and silicon dioxide was deposited as a passivation layer. The fabricated array was implanted in the somatosensory cortex of the right hemisphere of an anesthetized rat. The developed MEA was interfaced with an OpenBCI Cyton Daisy Biosensing Board to acquire the local field potentials. The LFPs were acquired at three different neurophysiological conditions, including baseline signals, chemically-induced epileptiform discharges, and recovered baseline signals after anti-epileptic drug (AED) administration. Further, time-frequency analyses were performed on the acquired biopotentials to study the difference in spatiotemporal features. The processed signals and time-frequency analyses clearly distinguish between pre-convulsant and post-AED baselines and evoked epileptiform discharges.


Subject(s)
Brain , Rodentia , Rats , Animals , Microelectrodes , Brain/physiology
4.
IEEE Rev Biomed Eng ; 16: 687-705, 2023.
Article in English | MEDLINE | ID: mdl-35687618

ABSTRACT

Breast cancer is a leading cause of mortality among women. The patient's survival rate is uncertain due to the limitations in the accuracy of diagnosis and effective monitoring during cancer treatment. The key to efficaciously controlling cancer on a larger scale is effective diagnosis at an early stage of cancer by distinguishing the vital signatures of the diseased from the normal breast tissue. The breast tissue is a heterogeneous turbid media that exhibits multifaceted bulk tissue properties. Various sensing modalities can yield distinct tissue behavior for cancer and adjacent normal tissues, serving as a basis for cancer diagnosis. A novel multimodal diagnostic tool that can concurrently assess the optical, electrical, and mechanical bulk tissue properties can substantially augment the clinical findings such as histopathology, potentially aiding the clinician to establish an accurate and rapid diagnosis of cancer. This review aims to discuss the clinical and engineering aspects along with the unmet challenges of these physical sensing modalities, primarily in the field of optical, electrical, and mechanical. The challenges of combining two or more of these sensing modalities that can significantly enhance the effectiveness of the clinical diagnostic tools are further investigated.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/diagnosis , Biomedical Technology
5.
Biomed Microdevices ; 24(4): 31, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36138255

ABSTRACT

Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.


Subject(s)
Electrocorticography , Titanium , Animals , Anticonvulsants , Convulsants , Electrodes, Implanted , Gold , Microelectrodes , Rats , Rodentia
6.
J Phys Condens Matter ; 34(2)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34584030

ABSTRACT

The confinement of water between sub-nanometer bounding walls of layered two-dimensional materials has generated tremendous interest. Here, we examined the influence of confined water on the mechanical and electromechanical response of graphene oxide films, prepared with variable oxidative states, casted on polydimethylsiloxane substrates. These films were subjected to uniaxial strain under controlled humid environments (5 to 90% RH), while dc transport studies were performed in tandem. Straining resulted in the formation of quasi-periodic linear crack arrays. The extent of water intercalation determined the density of cracks formed in the system thereby, governing the electrical conductance of the films under strain. The crack density at 5% strain, varied from 0 to 3.5 cracks mm-1for hydrated films and 8 to 22 cracks mm-1for dry films, across films with different high oxidative states. Correspondingly, the overall change in the electrical conductance at 5% strain was observed to be ∼5 to 20 folds for hydrated films and ∼20 to 35 folds for the dry films. The results were modeled with a decrease in the in-plane elastic modulus of the film upon water intercalation, which was attributed to the variation in the nature of hydrogen bonding network in graphene oxide lamellae.

7.
Nanoscale Adv ; 3(19): 5542-5564, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-36133274

ABSTRACT

Timely and accurate diagnosis of breast cancer is essential for efficient treatment and the best possible survival rates. Biosensors have emerged as a smart diagnostic platform for the detection of biomarkers specific to the onset, recurrence, and therapeutic drug monitoring of breast cancer. There have been exciting recent developments, including significant improvements in the validation, sensitivity, specificity, and integration of sample processing steps to develop point-of-care (POC) integrated micro-total analysis systems for clinical settings. The present review highlights various biosensing modalities (electrical, optical, piezoelectric, mass, and acoustic sensing). It provides deep insights into their design principles, signal amplification strategies, and comparative performance analysis. Finally, this review emphasizes the status of existing integrated micro-total analysis systems (µ-TAS) for personalized breast cancer therapeutics and associated challenges and outlines the approach required to realize their successful translation into clinical settings.

8.
Nanotechnology ; 29(32): 325706, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-29775438

ABSTRACT

Conventional graphene oxide (GO) is characterized by low sp2 content in a sp3 rich matrix, which is responsible both for electrical insulation and water super-permeation. Upon reduction, electrical conduction is achieved at the expense of water permeation ability. Here, we demonstrate that charge conduction and water permeation can be simultaneously restricted in a functionalized form of GO. Gravimetric studies reveal that diffusion of water vapor through a glassy polymer membrane is arrested by loading a hydrophobic form of GO (H-GO) in the polymer matrix, even as such, water inhibition cannot be realized by substantially increasing the thickness of the bare polymer. As an application, the ability of the coating to impede the degradation of methyl ammonium lead iodide films under high humidity conditions is demonstrated. At the same time the H-GO film has a resistance over 107 times higher when compared to thermally reduced GO of similar sp2 fraction. We attribute this unique behavior to the presence of a sub-micron matrix of GO with simultaneous presence of large (∼9.5 Å) and small (∼4.7 Å) interlayer spacing. This leads to disruption of the spatially distributed percolation pathways for electrical charge, and it also serves to block the nanocapillary networks for water molecules.

9.
Sci Rep ; 7(1): 14810, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093464

ABSTRACT

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

10.
Sci Rep ; 7(1): 2598, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572565

ABSTRACT

We demonstrate that crack propagation in uniaxially strained reduced graphene oxide (rGO) films is substantially dependent on the film thickness, for films in the sub-micron regime. rGO film on flexible polydimethylsiloxane (PDMS) substrate develop quasi-periodic cracks upon application of strain. The crack density and crack width follow contrasting trends as film thickness is increased and the results are described in terms of a sequential cracking model. Further, these cracks also have a tendency to relax when the strain is released. These features are also reflected in the strain-dependent electrical dc and ac conductivity studies. For an optimal thickness (3-coat), the films behave as strain-resistant, while for all other values it becomes strain-responsive, attributed to a favorable combination of crack density and width. This study of the film thickness dependent response and the crack propagation mechanism under strain is a significant step for rationalizing the application of layered graphene-like systems for flexible optoelectronic and strain sensing applications. When the thickness is tuned for enhanced extent of crack propagation, strain-sensors with gauge factor up to ∼470 are realized with the same material. When thickness is chosen to suppress the crack propagation, strain-resistive flexible TiO2- rGO UV photoconductor is realized.

11.
J Phys Condens Matter ; 29(23): 235301, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28497770

ABSTRACT

We investigate temperature-dependent charge transport in reduced graphene oxide (rGO) films coated on flexible polydimethylsiloxane (PDMS) substrates which are subject to uniaxial strain. Variable strain, up to 10%, results in an anisotropic morphology comprising of quasi-periodic linear array of deformations which are oriented perpendicular to the direction of strain. The anisotropy is reflected in the charge transport measurements, when conduction in the direction parallel and perpendicular to the applied strain are compared. Temperature dependence of resistance is measured for different values of strain in the temperature interval 80-300 K. While the resistance increases significantly upon application of strain, the temperature-dependent response shows anomalous decrease in resistance ratio R 80 K/R 300 K upon application of strain. This observation of favorable conduction processes under strain is further corroborated by reduced activation energy analysis of the temperature-dependent transport data. These anomalous transport features can be reconciled based on mutually competing effects of two processes: (i) thinning of graphene at the sites of periodic deformations, which tends to enhance the overall resistance by a purely geometrical effect, and (ii) locally enhanced inter-flake coupling in these same regions which contributes to improved temperature-dependent conduction.

12.
ACS Appl Mater Interfaces ; 6(10): 7485-90, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24779774

ABSTRACT

A novel approach is presented for achieving an enhanced photoresponse in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold FLG. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...