Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(33): 9967-9970, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28643423

ABSTRACT

10-Heterocorrole complexes with oxygen, sulfur, and selenium at position 10 of the macrocycle and with the divalent ions of nickel, copper, and palladium were prepared and investigated. The focus was set on the size adaptation and matching mechanisms of cavity size versus ionic radius in corrole-type macrocycles. A full set of single-crystal X-ray analytical data revealed that in all but one case the N4 binding site of the ring-contracted tetrapyrrole was larger than necessary to bind the metal ion without deformation. In-plane size adaptation through M-N bond-length elongation by 2.5-3.2 % was effective, as well as pronounced out-of-plane ruffling of the macrocycle for those compounds with a more severe size mismatch. Such ruffling had been excluded for corroles previously, but is apparently the most efficient mechanism to adapt to small central ions.

2.
Chemistry ; 20(10): 2913-24, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24478121

ABSTRACT

A first systematic study upon the preparation and exploration of a series of iron 10-thiacorroles with simple halogenido (F, Cl, Br, I), pseudo-halogenido (N3 , I3 ) and solvent-derived axial ligands (DMSO, pyridine) is reported. The compounds were prepared from the free-base octaethyl-10-thiacorrole by iron insertion and subsequent ligand-exchange reactions. The small N4 cavity of the ring-contracted porphyrinoid results in an intermediate spin (i.s., S=3/2) state as the ground state for the iron(III) ion. In most of the investigated cases, the i.s. state is found unperturbed and independent of temperature, as determined by a combination of X-ray crystallography and magnetometry with (1) H NMR-, EPR-, and Mössbauer spectroscopy. Two exceptions were found. The fluorido iron(III) complex is inhomogenous in the solid and contains a thermal i.s. (S=3/2)→high spin (h.s., S=5/2) crossover fraction. On the other side, the cationic bis(pyridine) complex resides in the expected low spin (l.s., S=1/2) state. Chemically, the iron 10-thiacorroles differ from the iron porphyrins mainly by weaker axial ligand binding and by a cathodic shift of the redox potentials. These features make the 10-thiacorroles interesting ligands for future research on biomimetic catalysts and model systems for unusual heme protein active sites.


Subject(s)
Ferric Compounds/chemistry , Hemeproteins/chemistry , Iron/chemistry , Metalloporphyrins/chemistry , Biomimetics , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Porphyrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...