Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 368(1925): 3983-99, 2010 Aug 28.
Article in English | MEDLINE | ID: mdl-20643689

ABSTRACT

We present very large-scale rheological studies of self-assembled cubic gyroid liquid crystalline phases in ternary mixtures of oil, water and amphiphilic species performed on petascale supercomputers using the lattice-Boltzmann method. These nanomaterials have found diverse applications in materials science and biotechnology, for example, in photovoltaic devices and protein crystallization. They are increasingly gaining importance as delivery vehicles for active agents in pharmaceuticals, personal care products and food technology. In many of these applications, the self-assembled structures are subject to flows of varying strengths and we endeavour to understand their rheological response with the objective of eventually predicting it under given flow conditions. Computationally, our lattice-Boltzmann simulations of ternary fluids are inherently memory- and data-intensive. Furthermore, our interest in dynamical processes necessitates remote visualization and analysis as well as the associated transfer and storage of terabytes of time-dependent data. These simulations are distributed on a high-performance grid infrastructure using the application hosting environment; we employ a novel parallel in situ visualization approach which is particularly suited for such computations on petascale resources. We present computational and I/O performance benchmarks of our application on three different petascale systems.

2.
Philos Trans A Math Phys Eng Sci ; 367(1897): 2557-71, 2009 Jun 28.
Article in English | MEDLINE | ID: mdl-19451110

ABSTRACT

We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.

3.
J Chem Phys ; 122(16): 164501, 2005 Apr 22.
Article in English | MEDLINE | ID: mdl-15945687

ABSTRACT

A local density functional approximation for predicting the surface crystallization of a thermodynamically small system under gravity is described and tested. Using the model of the classical soft-sphere fluid, the state parameters for such systems are identified. A generalized phase diagram based upon the scaling variables is obtained; systems with the same reduced-state parameters exhibit identical profiles of thermodynamic properties such as density, pressure, and intrinsic chemical potential, measured in the direction of the applied field. The point-thermodynamic approximation of Rowlinson and the local density approximation of the density functional formalism are found to be remarkably accurate. A configurational temperature is defined and shown to agree with the corresponding kinetic temperature for inhomogeneous systems at equilibrium. The structural profiles at the crystal-fluid interface are indicative of a mesolayer of lower density crystal, not seen in the field-free isobaric crystal-liquid interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...