Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 68: 65-73, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28663128

ABSTRACT

Emergence of a disease with clinical signs resembling megalocytivirus infection seriously affected large-scale barramundi farms in Vietnam in 2012-2014 with estimated losses reaching $435,810 per year. An oil-based, inactivated vaccine against red sea bream iridovirus (RSIV) was applied in one farm for disease prevention without analysis of the causative agent, and the farmer reported inadequate protection. Here we describe histological and molecular analysis of the diseased fish. PCR targeting the major capsid protein (MCP) of megalocytiviruses yielded an amplicon with high sequence identity to infectious spleen and kidney necrosis virus (ISKNV) genotype II previously reported from other marine fish but not barramundi. Detection of the virus was confirmed by positive in situ hybridization results with fish tissue lesions of the kidney, liver, pancreas, and brain of the PCR-positive samples. Based on the complete sequence of the MCP gene, the isolate showed 95.2% nucleotide sequence identity and 98.7% amino acid sequence identity (6 residue differences) with the MCP of RSIV. Prediction of antigenic determinants for MCP antigens indicated that the 6 residue differences would result in a significant difference in antigenicity of the two proteins. This was confirmed by automated homology modeling in which structure superimpositioning revealed several unique epitopes in the barramundi isolate. This probably accounted for the low efficiency of the RSIV vaccine when tested by the farmer.


Subject(s)
DNA Virus Infections/veterinary , Disease Outbreaks/veterinary , Fish Diseases/virology , Iridoviridae/genetics , Perciformes , Amino Acid Sequence , Animals , Capsid Proteins/genetics , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , Fish Diseases/epidemiology , Genome, Viral , Iridoviridae/classification , Phylogeny , Sequence Alignment , Vietnam/epidemiology
2.
J Appl Microbiol ; 121(1): 55-67, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27138064

ABSTRACT

AIMS: Infectious spleen and kidney necrosis virus (ISKNV) has recently been recognized as a causative agent of serious systemic disease in tilapia. Our objective was to establish a new colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of hydroxynapthol blue (blue-LAMP) to investigate ISKNV transmission in tilapia. METHODS AND RESULTS: The blue-LAMP, targeting a major capsid protein gene of ISKNV, was conducted at 65°C for 45 min, allowing unaided visual detection of the pathogen based on colour change without cross-amplification of other known fish pathogens tested. Comparison of blue-LAMP and PCR assays revealed a higher detection level for blue-LAMP assay (41·33%) in a population of farmed tilapia infected with ISKNV. The investigation of ISKNV transmission pattern in farmed red tilapia using the blue-LAMP revealed a possible matroclinical form. The presence of ISKNV in the gonad samples was confirmed by in situ LAMP assay. Positive signals only appeared in ovarian follicles, and not in oocytes. Moreover, tissue tropism assay revealed that the brain was the main target organ in both farmed red tilapia (40%) and Nile tilapia (20%). CONCLUSIONS: The developed blue-LAMP assay has the potential to be used as a viable tool for screening covert and natural infections of ISKNV in tilapia. The evidence of vertical transmission of ISKNV infection in tilapia indicates the seriousness of this disease and will require a close attention and collaboration between tilapia hatcheries and disease experts in order to find a solution. SIGNIFICANCE AND IMPACT OF THE STUDY: The new blue-LAMP assay is a time-saving and economically viable detection tool, which allows unaided visual detection for ISKNV in tilapia, and it could be applicable for field applications. Evidence on the vertical transmission of ISKNV in farmed tilapia suggests a need for developing farm management practices to control the spread of virus in aquaculture industries.


Subject(s)
Fish Diseases/virology , Nucleic Acid Amplification Techniques , Retroviridae Infections/veterinary , Tilapia/virology , Animals , Aquaculture/methods , Colorimetry/methods , Fish Diseases/transmission , Retroviridae Infections/diagnosis , Retroviridae Infections/transmission , Retroviridae Infections/virology , Sensitivity and Specificity , Trager duck spleen necrosis virus/genetics , Trager duck spleen necrosis virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...