Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 29(36): 54072-54087, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35657545

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this review article is to establish an understanding about the relationship between autoimmune conditions and COVID-19 infections. Although majority of the population have been protected with vaccines against this virus, there is yet a successful curative medication for this disease. The use of autoimmune medications has been widely considered to control the infection, thus postulating possible relationships between COVID-19 and autoimmune diseases. Several studies have suggested the correlation between autoantibodies detected in patients and the severity of the COVID-19 disease. Studies have indicated that the SARS-CoV-2 virus can disrupt the self-tolerance mechanism of the immune system, thus triggering autoimmune conditions. This review discusses the current scenario and future prospects of promising therapeutic strategies that may be employed to regulate such autoimmune conditions.


Subject(s)
Autoimmune Diseases , COVID-19 , Autoantibodies , Humans , SARS-CoV-2 , Virulence
2.
J Agric Food Chem ; 70(7): 2064-2076, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35147032

ABSTRACT

Respiratory viruses are linked to major epidemic events that have plagued humans through recorded history and possibly much earlier, ranging from common colds, influenza, and coronavirus infections to measles. However, difficulty in developing effective pharmaceutical solutions to treat infected individuals has hindered efforts to manage and minimize respiratory viral outbreaks and the associated mortality. Here we highlight a series of botanical interventions with different and often overlapping putative mechanisms of action to support the respiratory system, for which the bioactive pharmacophore was suggested and the initial structure-activity relationships have been explored (Bupleurum spp., Glycyrrhiza spp., Andrographis spp.), have been proposed with uncertainty (Echinacea spp., Zingiber spp., Verbascum spp., Marrubium spp.), or remained to be elucidated (Sambucus spp., Urtica spp.). Investigating these metabolites and their botanical sources holds potential to uncover new mediators of the respiratory health outcomes as well as molecular targets for future break-through therapeutic interventions targeting respiratory viral outbreaks.


Subject(s)
Phytotherapy , Respiratory System , Virus Diseases/drug therapy , Disease Outbreaks , Humans , Plant Extracts/pharmacology
3.
Eur J Pharmacol ; 919: 174821, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35151643

ABSTRACT

Chronic respiratory diseases have collectively become a major public health concern and have now taken form as one of the leading causes of mortality worldwide. Most chronic respiratory diseases primarily occur due to prolonged airway inflammation. In addition, critical environmental factors such as cigarette smoke, industrial pollutants, farm dust, and pollens may also exacerbate such diseases. Moreover, alterations in the genetic sequence of an individual, abnormalities in the chromosomes or immunosuppression resulting from bacterial, fungal, and viral infections may also play a key role in the pathogenesis of respiratory diseases. Over the years, multiple in vitro models have been employed as the basis of existing as well as emerging advancements in chronic respiratory disease research. These include cell lines, gene expression techniques, single cell RNA sequencing, cytometry, culture techniques, as well as serum/sputum biomarkers that can be used to elucidate the molecular mechanisms underlying these diseases, and to identify novel diagnostic and management options for these diseases. This review summarizes the current understanding of the pathogenesis of various chronic respiratory diseases derived through in vitro experimental models, where the knowledge obtained from these studies can greatly benefit researchers in the discovery and development of novel screening techniques and advanced therapeutic strategies that could be translated into clinical use in the future.


Subject(s)
Models, Theoretical , Pulmonary Disease, Chronic Obstructive/drug therapy , Biomarkers/metabolism , Drug Development , Humans , Pulmonary Disease, Chronic Obstructive/metabolism
4.
Article in English | WPRIM (Western Pacific) | ID: wpr-846797

ABSTRACT

Traditionally, medicinal plants of family Moringaceae have been well-recognized due to their multipurpose utilization in various fields such as treatment of several diseases for they have a broad range of pharmacological activities, in wastewater treatment as well as food source. Fractionation of this medicinal plants and its bioactivity study discloses the presence of several phytoconstituents and secondary metabolites like terpenes, flavonoids, steroids, phenolic compounds, tannins, carohydrates, flavonoids, vitamins and minerals. The results of bioactivity study results revealed that different extracts such as aqueous, methanolic and ethanolic of Moringa oleifera showed notable therapeutic activities. Our present review explore and focus on the phytochemical composition and various pharmacological activities like immunomodulator, antidiabetic, antiulcer, anthelmintic, anti-inflammatory, antipyretic, analgesic, antiepileptic, cardioprotective, lipid lowering, antihypertensive, hepatoprotective, anti-nephrotoxicity and anti-microbial activities to arouse public consciousness about the nutritional and medicinal value of this 'miracle tree-Moringa oleifera' in favor of humanity.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-951202

ABSTRACT

Traditionally, medicinal plants of family Moringaceae have been well-recognized due to their multipurpose utilization in various fields such as treatment of several diseases for they have a broad range of pharmacological activities, in wastewater treatment as well as food source. Fractionation of this medicinal plants and its bioactivity study discloses the presence of several phytoconstituents and secondary metabolites like terpenes, flavonoids, steroids, phenolic compounds, tannins, carohydrates, flavonoids, vitamins and minerals. The results of bioactivity study results revealed that different extracts such as aqueous, methanolic and ethanolic of Moringa oleifera showed notable therapeutic activities. Our present review explore and focus on the phytochemical composition and various pharmacological activities like immunomodulator, antidiabetic, antiulcer, anthelmintic, anti-inflammatory, antipyretic, analgesic, antiepileptic, cardioprotective, lipid lowering, antihypertensive, hepatoprotective, anti-nephrotoxicity and anti-microbial activities to arouse public consciousness about the nutritional and medicinal value of this 'miracle tree-Moringa oleifera' in favor of humanity.

SELECTION OF CITATIONS
SEARCH DETAIL
...