Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 45(2): 417-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22836485

ABSTRACT

Trypanosomiasis caused by Trypanosoma evansi commonly produces wasting disease with signs of emaciation and cachexia mainly at the end stage. The present study was conducted to explore the possible hyperlipaemia or hyperlipidaemia and its association with cachexia-anorexia in equine trypanosomiasis. Out of the fifteen confirmed animals, none of the plasma sample was opaque. There was a significant increase in plasma triglyceride, total cholesterol and blood urea nitrogen and a highly significant increase in low-density lipoprotein (LDL) levels. A mild increase in high-density lipoprotein (HDL) and very low-density lipoprotein levels were observed, while the relative percentage of HDL and LDL was altered with high significance. A moderate increase in triglyceride and highly significant increase in LDL might be the reasons for retention of appetite and lipolysis. Possible protein breakdown and presence of lipolysis might be the reasons for cachexia in equine trypanosomiasis.


Subject(s)
Anorexia/veterinary , Blood Urea Nitrogen , Cachexia/veterinary , Horse Diseases/physiopathology , Hyperlipidemias/veterinary , Lipids/blood , Trypanosomiasis/veterinary , Animals , Anorexia/parasitology , Anorexia/physiopathology , Appetite , Cachexia/parasitology , Cachexia/physiopathology , Horse Diseases/parasitology , Horses , Hyperlipidemias/parasitology , Hyperlipidemias/physiopathology , Spectrophotometry, Ultraviolet/veterinary , Trypanosoma/physiology , Trypanosomiasis/complications , Trypanosomiasis/parasitology
2.
Asian-Australas J Anim Sci ; 25(6): 812-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-25049631

ABSTRACT

Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to 2.3×10(6) cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

SELECTION OF CITATIONS
SEARCH DETAIL
...