Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Cardiovasc Genet ; 7(2): 132-143, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24585742

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common genetic disorder caused mainly by mutations in sarcomeric proteins and is characterized by maladaptive myocardial hypertrophy, diastolic heart failure, increased myofilament Ca(2+) sensitivity, and high susceptibility to sudden death. We tested the following hypothesis: correction of the increased myofilament sensitivity can delay or prevent the development of the HCM phenotype. METHODS AND RESULTS: We used an HCM mouse model with an E180G mutation in α-tropomyosin (Tm180) that demonstrates increased myofilament Ca(2+) sensitivity, severe hypertrophy, and diastolic dysfunction. To test our hypothesis, we reduced myofilament Ca(2+) sensitivity in Tm180 mice by generating a double transgenic mouse line. We crossed Tm180 mice with mice expressing a pseudophosphorylated cardiac troponin I (S23D and S24D; TnI-PP). TnI-PP mice demonstrated a reduced myofilament Ca(2+) sensitivity compared with wild-type mice. The development of pathological hypertrophy did not occur in mice expressing both Tm180 and TnI-PP. Left ventricle performance was improved in double transgenic compared with their Tm180 littermates, which express wild-type cardiac troponin I. Hearts of double transgenic mice demonstrated no changes in expression of phospholamban and sarcoplasmic reticulum Ca(2+) ATPase, increased levels of phospholamban and troponin T phosphorylation, and reduced phosphorylation of TnI compared with Tm180 mice. Moreover, expression of TnI-PP in Tm180 hearts inhibited modifications in the activity of extracellular signal-regulated kinase and zinc finger-containing transcription factor GATA in Tm180 hearts. CONCLUSIONS: Our data strongly indicate that reduction of myofilament sensitivity to Ca(2+) and associated correction of abnormal relaxation can delay or prevent development of HCM and should be considered as a therapeutic target for HCM.


Subject(s)
Calcium/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Myofibrils/metabolism , Tropomyosin/genetics , Troponin I/genetics , Animals , Calcium-Binding Proteins/metabolism , Cardiomyopathy, Hypertrophic/therapy , Humans , Mice , Mice, Transgenic , Mutation , Phosphorylation , Tropomyosin/metabolism , Troponin I/metabolism , Troponin T/metabolism
2.
Circulation ; 111(18): 2330-8, 2005 May 10.
Article in English | MEDLINE | ID: mdl-15867176

ABSTRACT

BACKGROUND: Transgenic and gene-targeted models have focused on the mouse. Fundamental differences between the mouse and human exist in Ca2+ handling during contraction/relaxation and in alterations in Ca2+ flux during heart failure, with the rabbit more accurately reflecting the human system. METHODS AND RESULTS: Cardiac troponin I (cTnI) mutations can cause familial hypertrophic cardiomyopathy. An inhibitory domain mutation, arginine146-->glycine (cTnI(146Gly)), was modeled with the use of transgenic expression in the rabbit ventricle. cTnI(146Gly) levels >40% of total cTnI were perinatally lethal, whereas replacement levels of 15% to 25% were well tolerated. cTnI(146Gly) expression led to a leftward shift in the force-pCa2+ curves with cardiomyocyte disarray, fibrosis, and altered connexin43 organization. In isolated cTnI(146Gly) myocytes, twitch relaxation amplitudes were smaller than in normal cells, but [Ca]i transients and sarcoplasmic reticulum Ca2+ load were not different. Detrended fluctuation analysis of the QT(max) intervals was used to evaluate the cardiac repolarization phase and showed a significantly higher scaling exponent in the transgenic animals. CONCLUSIONS: Expression of modest amounts of cTnI(146Gly) led to subtle defects without severely affecting cardiac function. Aberrant connexin organization, subtle morphological deficits, and an altered fractal pattern of the repolarization phase of transgenic rabbits, in the absence of entropy or other ECG abnormalities, may indicate an early developing pathology before the onset of more obvious repolarization abnormalities or major alterations in cardiac mechanics.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial/genetics , Mutation, Missense , Troponin I/genetics , Animals , Animals, Genetically Modified , Calcium/metabolism , Cardiomegaly , Cardiomyopathy, Hypertrophic, Familial/pathology , Cardiomyopathy, Hypertrophic, Familial/physiopathology , Connexin 43/metabolism , Disease Models, Animal , Electrocardiography , Fibrosis , Heart Function Tests , Heart Ventricles/metabolism , Humans , Myocytes, Cardiac/pathology , Phenotype , Rabbits , Transgenes
3.
J Biol Chem ; 280(1): 703-14, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15507454

ABSTRACT

Adrenergic stimulation induces positive changes in cardiac contractility and relaxation. Cardiac troponin I is phosphorylated at different sites by protein kinase A and protein kinase C, but the effects of these post-translational modifications on the rate and extent of contractility and relaxation during beta-adrenergic stimulation in the intact animal remain obscure. To investigate the effect(s) of complete and chronic cTnI phosphorylation on cardiac function, we generated transgenic animals in which the five possible phosphorylation sites were replaced with aspartic acid, mimicking a constant state of complete phosphorylation (cTnI-AllP). We hypothesized that chronic and complete phosphorylation of cTnI might result in increased morbidity or mortality, but complete replacement with the transgenic protein was benign with no detectable pathology. To differentiate the effects of the different phosphorylation sites, we generated another mouse model, cTnI-PP, in which only the protein kinase A phosphorylation sites (Ser(23)/Ser(24)) were mutated to aspartic acid. In contrast to the cTnIAllP, the cTnI-PP mice showed enhanced diastolic function under basal conditions. The cTnI-PP animals also showed augmented relaxation and contraction at higher heart rates compared with the nontransgenic controls. Nuclear magnetic resonance amide proton/nitrogen chemical shift analysis of cardiac troponin C showed that, in the presence of cTnI-AllP and cTnI-PP, the N terminus exhibits a more closed conformation, respectively. The data show that protein kinase C phosphorylation of cTnI plays a dominant role in depressing contractility and exerts an antithetic role on the ability of protein kinase A to increase relaxation.


Subject(s)
Myocardium/metabolism , Protein Processing, Post-Translational , Troponin I/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , In Vitro Techniques , Mice , Mice, Transgenic , Myocardial Contraction/physiology , Phosphorylation , Protein Kinase C/metabolism
4.
J Mol Cell Cardiol ; 35(6): 623-36, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788380

ABSTRACT

Mutations causing familial hypertrophic cardiomyopathy (HCM) have been described in at least 11 genes encoding cardiac sarcomeric proteins. In this study, three previously unknown deletions have been identified in the human cardiac genes coding for beta-myosin heavy chain (MYH7 on chromosome 14) and myosin-binding protein-C (MYBPC3 on chromosome 11). In family MM, a 3-bp deletion in MYH7 was detected to be associated with loss of glutamic acid in position 927 (DeltaE927) of the myosin rod. In two other families (HH and NP, related by a common founder) a 2-bp loss in codon 453 (exon 16) of MYBPC3 was identified as the presumable cause of a translation reading frame shift. Taken together 15 living mutation carriers were investigated. Six deceased family members (with five cases of premature sudden cardiac death (SCD) in families MM and NP) were either obligate or suspected mutation carriers. In addition to these mutations a 25-bp deletion in intron 32 of MYBPC3 was identified in family MM (five carriers) and in a fourth family (MiR, one HCM patient, three deletion carriers). In agreement with the loss of the regular splicing branch point in the altered intron 32, a splicing deficiency was observed in an exon trapping experiment using MYBPC3 exon 33 as a test substrate. Varying disease profiles assessed using standard clinical, ECG and echocardiographic procedures in conjunction with mutation analysis led to the following conclusions: (1) In family MM the DeltaE927 deletion in MYH7 was assumed to be associated with complete penetrance. Two cases of reported SCD might have been related to this mutation. (2) The two families, HH and NP, distantly related by a common founder, and both suffering from a 2-bp deletion in exon 16 of MYBPC3 differed in their average phenotypes. In family NP, four cases of cardiac death were documented, whereas no cardiac-related death was reported from family HH. These results support the notion that mutations in HCM genes may directly determine disease penetrance and severity; however, a contribution of additional, unidentified factors (genes) to the HCM phenotype can-at least in some cases-not be excluded. (3) The deletion in intron 32 of MYBPC3 was seen in two families, but in both its relation to disease was not unequivocal. In addition, this deletion was observed in 16 of 229 unrelated healthy individuals of the population of the South Indian states of Kerala and Tamil Nadu. It was not seen in 270 Caucasians from Russia and western Europe. Hence, it is considered to represent a regional genetic polymorphism restricted to southern India. The association of the deletion with altered splicing in transfected cells suggests that this deletion may create a "modifying gene", which is per se not or only rarely causing HCM, but which may enhance the phenotype of a mutation responsible for disease.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial/genetics , Carrier Proteins/genetics , Gene Deletion , Ventricular Myosins/genetics , Adolescent , Adult , Animals , Child , DNA Mutational Analysis , Echocardiography , Exons , Family Health , Female , Heterozygote , Humans , India , Introns , Male , Middle Aged , Mutation , Pedigree , Phenotype , Polymorphism, Genetic , RNA Splicing
SELECTION OF CITATIONS
SEARCH DETAIL
...