Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 86(1): 333-351, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33253563

ABSTRACT

Herein, a facile diversity-oriented approach to access functionalized benzo[a]fluorenes, benzo[b]fluorenones, and naphthyl ketones has been demonstrated via site-selective intramolecular cyclization of aryl-fused 1,6-diyn-3-ones. Synthesis of benzo[a]fluorenes and naphthyl ketones has been achieved selectively using TfOH and AgBF4, respectively, via in situ-formed acetals. Aryl-fused 1,6-diyn-3-ones undergo triflic acid-mediated intramolecular cyclization, leading to benzo[b]fluorenone derivatives via a radical intermediate as supported by EPR studies. Kinetic studies of these transformations have also been performed by UV-visible spectroscopic analysis to shed light on the reaction profile.

2.
J Org Chem ; 83(19): 12171-12183, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30178678

ABSTRACT

A highly functionalized and easily accessible six-carbon diazo building block has been developed and utilized as a 1,4-diacceptor for an efficient synthesis of functionalized tetrahydrocarbazoles, carbazoles, and tetrahydropyrido[1,2- a]indoles. The synthesis involves concurrent tandem catalysis by Sc(OTf)3 and Rh2(OAc)4. The role of Sc(OTf)3 is critical as it facilitates both the initial intermolecular Michael reaction of the indole and the subsequent Rh(II)-catalyzed intramolecular annulation. The products, tetrahydrocarbazoles and tetrahydropyridoindoles, are equipped with a ß-ketoester and ester functionalities which can be utilized for further synthetic elaborations.

3.
Org Biomol Chem ; 14(5): 1670-9, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26699693

ABSTRACT

Regioselective lithiation followed by functionalization of 2-(2,4-dihalophenyl)-1,3-dithiane derivatives with different electrophiles was achieved in good to excellent yields. When the title compound is treated with n-butyl lithium, lithiation occurs selectively at the aromatic carbon having less acidic proton despite the presence of thermodynamically more acidic 1,3-dithiane proton in the same molecule. Computationally calculated pKa values of the available reactive site protons and the experimental results suggest that the regioselective lithiation in 2-(2,4-dihalophenyl)-1,3-dithiane derivatives is not governed by thermodynamic acidity rather exclusively dictated by the kinetic removal of protons due to cooperative coordination (complex induced proximity effect, CIPE) and inductive effects of the 1,3-dihalo substituents present in the aromatic ring. By employing this regioselective functionalization, diverse 1,2,3,4-tetra-substituted aromatic compounds were prepared with ease.

SELECTION OF CITATIONS
SEARCH DETAIL
...