Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139573

ABSTRACT

Skin-based wearable devices have gained significant attention due to advancements in soft materials and thin-film technologies. Nevertheless, traditional wearable electronics often entail expensive and intricate manufacturing processes and rely on metal-based substrates that are susceptible to corrosion and lack flexibility. In response to these challenges, this paper has emerged with an alternative substrate for wearable electrodes due to its cost-effectiveness and scalability in manufacturing. Paper-based electrodes offer an attractive solution with their inherent properties of high breathability, flexibility, biocompatibility, and tunability. In this study, we introduce carbon nanotube-based paper composites (CPC) electrodes designed for the continuous detection of biopotential signals, such as electrooculography (EOG), electrocardiogram (ECG), and electroencephalogram (EEG). To prevent direct skin contact with carbon nanotubes, we apply various packaging materials, including polydimethylsiloxane (PDMS), Eco-flex, polyimide (PI), and polyurethane (PU). We conduct a comparative analysis of their signal-to-noise ratios in comparison to conventional gel electrodes. Our system demonstrates real-time biopotential monitoring for continuous health tracking, utilizing CPC in conjunction with a portable data acquisition system. The collected data are analyzed to provide accurate heart rates, respiratory rates, and heart rate variability metrics. Additionally, we explore the feasibility using CPC for sleep monitoring by collecting EEG signals.


Subject(s)
Nanotubes, Carbon , Wearable Electronic Devices , Nanotubes, Carbon/chemistry , Skin , Electrodes , Sleep , Electrocardiography
2.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323418

ABSTRACT

Current point-of-care (POC) screening of Coronavirus disease 2019 (COVID-19) requires further improvements to achieve highly sensitive, rapid, and inexpensive detection. Here we describe an immunoresistive sensor on a polyethylene terephthalate (PET) film for simple, inexpensive, and highly sensitive COVID-19 screening. The sensor is composed of single-walled carbon nanotubes (SWCNTs) functionalized with monoclonal antibodies that bind to the spike protein of SARS-CoV-2. Silver electrodes are silkscreen-printed on SWCNTs to reduce contact resistance. We determine the SARS-CoV-2 status via the resistance ratio of control- and SARS-CoV-2 sensor electrodes. A combined measurement of two adjacent sensors enhances the sensitivity and specificity of the detection protocol. The lower limit of detection (LLD) of the SWCNT assay is 350 genome equivalents/mL. The developed SWCNT sensor shows 100% sensitivity and 90% specificity in clinical sample testing. Further, our device adds benefits of a small form factor, simple operation, low power requirement, and low assay cost. This highly sensitive film sensor will facilitate rapid COVID-19 screening and expedite the development of POC screening platforms.


Subject(s)
Biosensing Techniques , COVID-19 , Nanotubes, Carbon , Biosensing Techniques/methods , COVID-19/diagnosis , Humans , Limit of Detection , Point-of-Care Systems , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...