Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(2): 02B135, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932017

ABSTRACT

A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.


Subject(s)
Anions , Cesium , Cyclotrons , Deuterium
2.
Rev Sci Instrum ; 87(2): 02C108, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932118

ABSTRACT

A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P(+) beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P(+) beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH3 gas.

3.
Rev Sci Instrum ; 85(2): 02B107, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593547

ABSTRACT

A multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current. The ion source produced 16 mA of DC H(-) ion beam with the Cs-seeded operation at a low arc discharge power of 2.8 kW.


Subject(s)
Cyclotrons/instrumentation , Hydrogen , Cesium , Magnets , Temperature
4.
Rev Sci Instrum ; 85(2): 02C306, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593643

ABSTRACT

A microwave ion source is one of the long-life ion sources. In this paper, we report on the characteristics of the extracted Ar ion beam produced by a microwave ion source under various conditions, in terms of magnetic flux distribution and mass flow, and the stability of the ion beam. The measured spectra show that, under the experimental condition, almost all of produced ions were Ar(+) ions. For more than 6 h, the ion beam was stable.

SELECTION OF CITATIONS
SEARCH DETAIL
...