Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 55: 14-8, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24355460

ABSTRACT

A red blood cell (RBC) from human exhibited direct electron transfer (DET) activity on a bare indium tin oxide (ITO) electrode. A formal potential of -0.152 V vs. a silver-silver chloride saturated potassium chloride (Ag|AgCl|KCl(satd.)) was estimated for the human RBC (type AB) from a pair of redox peaks at around 0.089 and -0.215 V (vs. Ag|AgCl|KCl(satd.)) on cyclic voltammetric (CV) measurements in a phosphate buffered saline (PBS; 39 mM; pH 7.4) solution. The results agreed well with those of a redox couple for iron-bearing heme groups in hemoglobin molecules (HbFe(II)/HbFe(III)) on the bare ITO electrodes, indicated that DET active species were hemoglobin (Hb) molecules encapsulated by a phospholipid bilayer membrane of the human RBC. The quantity of electrochemically active Hb in the human RBC was estimated to be 30 pmol cm(-2). In addition, the human RBC exhibited oxygen reduction reaction (ORR) activity in the dioxygen (O2) saturated PBS solution at the negative potential from ca. -0.15 V (vs. Ag|AgCl|KCl(satd.)). A single cell test proved that a biofuel cell (BFC) with an O2|RBC|ITO cathode showed the open-circuit voltage (OCV) of ca. 0.43 V and the maximum power density of ca. 0.68 µW cm(-2).


Subject(s)
Bioelectric Energy Sources , Electric Power Supplies , Electrochemistry/instrumentation , Electrodes , Erythrocytes/physiology , Catalysis , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Humans , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...