Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(6): e0233722, 2020.
Article in English | MEDLINE | ID: mdl-32479526

ABSTRACT

Melon yellow spot orthotospovirus (MYSV), a member of the genus Orthotospovirus, is an important virus in cucurbits. Thrips palmi is considered the most serious pest of cucurbits because it directly damages and indirectly transmits MYSV to the plant. The effects of MYSV-infected plants on the development time, fecundity, and preference of the thrips were analyzed in this study. Our results showed that the development time of male and female thrips did not differ significantly between MYSV-infected and non-infected cucumbers. The survival rate of thrips in non-infected and MYSV-infected cucumbers were not significantly different. In a non-choice assay, T. palmi adults were released on non-infected and MYSV-infected cucumbers and allowed to lay eggs. The number of hatched larvae did not significantly differ between non-infected and MYSV-infected cucumbers. In a choice assay, MYSV had no detectable effect on the number of adult thrips and preceding hatched larvae. In a pull assay, the settling rate of thrips on the released plant did not differ significantly when the adult thrips were released to non-infected or MYSV infected cucumbers for any cucumber cultivar. Based on our results, we propose that the effects of MYSV-infected cucumbers on the development time, fecundity, or preference of T. palmi may not be an important factor in MYSV spread between cucumbers.


Subject(s)
Cucumis sativus/parasitology , Orthobunyavirus/pathogenicity , Thysanoptera/physiology , Animals , Female , Fertility , Host Specificity , Male , Thysanoptera/growth & development , Thysanoptera/pathogenicity , Thysanoptera/virology
2.
Plant Cell Physiol ; 53(1): 204-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22180600

ABSTRACT

The western flower thrips (Frankliniella occidentalis) is a polyphagous herbivore that causes serious damage to many agricultural plants. In addition to causing feeding damage, it is also a vector insect that transmits tospoviruses such as Tomato spotted wilt virus (TSWV). We previously reported that thrips feeding on plants induces a jasmonate (JA)-regulated plant defense, which negatively affects both the performance and preference (i.e. host plant attractiveness) of the thrips. The antagonistic interaction between a JA-regulated plant defense and a salicylic acid (SA)-regulated plant defense is well known. Here we report that TSWV infection allows thrips to feed heavily and multiply on Arabidopsis plants. TSWV infection elevated SA contents and induced SA-regulated gene expression in the plants. On the other hand, TSWV infection decreased the level of JA-regulated gene expression induced by thrips feeding. Importantly, we also demonstrated that thrips significantly preferred TSWV-infected plants to uninfected plants. In JA-insensitive coi1-1 mutants, however, thrips did not show a preference for TSWV-infected plants. In addition, SA application to wild-type plants increased their attractiveness to thrips. Our results suggest the following mechanism: TSWV infection suppresses the anti-herbivore response in plants and attracts its vector, thrips, to virus-infected plants by exploiting the antagonistic SA-JA plant defense systems.


Subject(s)
Arabidopsis/immunology , Arabidopsis/parasitology , Cyclopentanes/metabolism , Insect Vectors/physiology , Oxylipins/metabolism , Salicylic Acid/antagonists & inhibitors , Thysanoptera/physiology , Tospovirus/physiology , Animals , Arabidopsis/genetics , Arabidopsis/virology , Gene Expression Regulation, Plant , Host-Parasite Interactions , Plant Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...