Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Nephrol ; 13: 160, 2012 Dec 02.
Article in English | MEDLINE | ID: mdl-23199000

ABSTRACT

BACKGROUND: Urinary Ca2+ excretion increases with dietary NaCl. NaCl-induced calciuria may be associated with hypertension, urinary stone formation and osteoporosis, but its mechanism and long-term effects are not fully understood. This study examined alterations in the expressions of renal Ca2+ transporters, channels and claudins upon salt loading to better understand the mechanism of salt-induced urinary Ca2+ loss. METHODS: Eight-week old Wistar-Kyoto rats were fed either 0.3% or 8% NaCl diet for 8 weeks. Renal cortical expressions of Na+/Ca2+ exchanger 1 (NCX1), Ca2+ pump (PCMA1b), Ca2+ channel (TRPV5), calbindin-D28k, and claudins (CLDN-2, -7, -8, -16 and -19) were analyzed by quantitative PCR, western blot and/or immunohistochemistry. RESULTS: Fractional excretion of Ca2+ increased 6.0 fold with high-salt diet. Renal cortical claudin-2 protein decreased by approximately 20% with decreased immunological staining on tissue sections. Claudin-16 and -19 expressions were not altered. Renal cortical TRPV5, calbindin-D28k and NCX1 expressions increased 1.6, 1.5 and 1.2 fold, respectively. CONCLUSIONS: Chronic high-salt diet decreased claudin-2 protein and increased renal TRPV5, calbindin-D28k, and NCX1. Salt loading is known to reduce the proximal tubular reabsorption of both Na+ and Ca2+. The reduction in claudin-2 protein expression may be partly responsible for the reduced Ca2+ reabsorption in this segment. The concerted upregulation of more distal Ca2+-transporting molecules may be a physiological response to curtail the loss of Ca2+, although the magnitude of compensation does not seem adequate to bring the urinary Ca2+ excretion down to that of the normal-diet group.


Subject(s)
Calcium Channels/biosynthesis , Claudin-2/biosynthesis , Kidney Tubules/metabolism , S100 Calcium Binding Protein G/biosynthesis , Sodium Chloride, Dietary/administration & dosage , Sodium-Calcium Exchanger/biosynthesis , TRPV Cation Channels/biosynthesis , Animals , Calbindin 1 , Calbindins , Calcium/urine , Gene Expression Regulation , Rats , Rats, Inbred WKY , Sodium Chloride, Dietary/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...