Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 433(9): 166889, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33639214

ABSTRACT

Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.


Subject(s)
Septins/chemistry , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Septins/metabolism , Solutions , Thermodynamics
2.
Biophys J ; 111(12): 2608-2619, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-28002737

ABSTRACT

Protein-protein interactions play a critical role in promoting the stability of protein quaternary structure and in the assembly of large macromolecular complexes. What drives the stabilization of such assemblies is a central question in biology. A limiting factor in fully understanding such systems is the transient nature of many complexes, making structural studies difficult. Septins comprise a conserved family of guanine nucleotide binding proteins that polymerize in the form of heterofilaments. In structural terms, they have a common organization: a central GTPase domain, an N-terminal domain, and a C-terminal domain; the latter is predicted to form a coiled coil. Currently, even for the best characterized human septin heterocomplex (SEPT2/SEPT6/SEPT7), the role of C-terminal domain is not fully established, and this is partly due to the absence of electron density for the C-terminal domains in the x-ray structure. Here we present results on the homo/heterotypical affinity for the C-terminal domains of human septins belonging to the SEPT6 and SEPT7 groups (SEPT6C/8C/10C/11C and SEPT7C, respectively) and provide clear evidence that this domain determines the preference for heterotypic interactions at one specific interface during the assembly of the heterofilament. This observation has wider implications where macromolecular assemblies are defined by coiled-coil protein interactions.


Subject(s)
Protein Aggregates , Septins/chemistry , Humans , Protein Stability , Protein Structure, Secondary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL