Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 605(7909): 248-250, 2022 05.
Article in English | MEDLINE | ID: mdl-35546192

ABSTRACT

Novae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which leads to a rapid expansion of the envelope and the ejection of most of its mass1,2. Theory has predicted the existence of a 'fireball' phase following directly on from the runaway fusion, which should be observable as a short, bright and soft X-ray flash before the nova becomes visible in the optical3-5. Here we report observations of a bright and soft X-ray flash associated with the classical Galactic nova YZ Reticuli 11 h before its 9 mag optical brightening. No X-ray source was detected 4 h before and after the event, constraining the duration of the flash to shorter than 8 h. In agreement with theoretical predictions4,6-8, the source's spectral shape is consistent with a black-body of 3.27+0.11-0.33 × 105 K (28.2+0.9-2.8 eV), or a white dwarf atmosphere, radiating at the Eddington luminosity, with a photosphere that is only slightly larger than a typical white dwarf.

2.
Nature ; 493(7431): 187-90, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23235823

ABSTRACT

A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

3.
Science ; 298(5592): 393-5, 2002 Oct 11.
Article in English | MEDLINE | ID: mdl-12376696

ABSTRACT

Classical nova explosions are very energetic and frequent phenomena caused by explosive hydrogen burning on top of an accreting white dwarf. Observations of the recent nova V2487 Oph 1998 by the X-ray Multi-Mirror satellite (XMM-Newton) provide evidence that accretion (probably on a magnetic white dwarf) was reestablished as early as 2.7 years after the explosion. In addition, positional correlation with a source previously discovered by the Röntgen Satellite (ROSAT) in 1990 suggests that the site of a nova explosion had been seen in x-rays before the outburst.

SELECTION OF CITATIONS
SEARCH DETAIL
...