Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(13): e202303736, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38133651

ABSTRACT

Polyurethanes are synthesized on industrial scale by the reaction of diisocyanates with diols in the presence of catalysts which are commonly based on tin complexes and amines. However, due to the toxicity and volatility of these tin catalysts and amines, there is the need to develop new catalysts that are more environmentally benign. Herein, we report the synthesis of O^N^O pincer-ligated Mn(III) and Fe(III) complexes that serve as suitable catalysts for urethane formation and are stable to hydrolysis as predicted by computations and observed experimentally. The O^N^O pincer scaffold is vital to the activity of these catalysts, simultaneously ensuring increased solubility in the reaction medium as well as providing a stable framework upon dissociation of co-ligands in the catalytic cycle. In silico mechanistic investigations for urethane formation show that the stabilization of active species in square-planar geometries enabled by these O^N^O ligands permit the simultaneous coordination of alcohol and isocyanate in suitable configuration at the metal center.

2.
Chemistry ; 22(5): 1704-13, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26742657

ABSTRACT

The radical trifluoromethylation of thiophenol in condensed phase applying reagent 1 (3,3-dimethyl-1-(trifluoromethyl)-1λ(3),2-benziodoxol) has been examined by both theoretical and experimental methodologies. On the basis of ab initio molecular dynamics and metadynamics we show that radical reaction mechanisms favourably compete with polar ones involving the S-centred nucleophile thiophenol, their free energies of activation, ΔF(≠), lying between 9 and 15 kcal mol(-1). We further show that the origin of the proton activating the reagent is important. Hammett plot analysis reveals intramolecular protonation of 1, thus generating negative charge on the sulfur atom in the rate-determining step. The formation of a CF3 radical can be thermally induced by internal dissociative electron transfer, its activation energy, ΔF(≠), amounting to as little as 10.8 and 2.8 kcal mol(-1) for reagent 1 and its protonated form 2, respectively. The reduction of the iodine atom by thiophenol occurs either subsequently or in a concerted fashion.

3.
J Comput Chem ; 36(11): 785-94, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25766580

ABSTRACT

The electrophilic N-trifluoromethylation of MeCN with a hypervalent iodine reagent to form a nitrilium ion, that is rapidly trapped by an azole nucleophile, is thought to occur via reductive elimination (RE). A recent study showed that, depending on the solvent representation, the S(N)2 is favoured to a different extent over the RE. However, there is a discriminative solvent effect present, which calls for a statistical mechanics approach to fully account for the entropic contributions. In this study, we perform metadynamic simulations for two trifluoromethylation reactions (with N- and S-nucleophiles), showing that the RE mechanism is always favoured in MeCN solution. These computations also indicate that a radical mechanism (single electron transfer) may play an important role. The computational protocol based on accelerated molecular dynamics for the exploration of the free energy surface is transferable and will be applied to similar reactions to investigate other electrophiles on the reagent. Based on the activation parameters determined, this approach also gives insight into the mechanistic details of the trifluoromethylation and shows that these commonly known mechanisms mark the limits within which the reaction proceeds.


Subject(s)
Iodine Compounds/chemistry , Computer Simulation , Methylation , Molecular Structure , Phenols/chemistry , Thermodynamics
4.
J Comput Chem ; 35(29): 2122-31, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25220398

ABSTRACT

Trifluoromethylation of acetonitrile with 3,3-dimethyl-1-(trifluoromethyl)-1λ(3),2- benziodoxol is assumed to occur via reductive elimination (RE) of the electrophilic CF3-ligand and MeCN bound to the hypervalent iodine. Computations in gas phase showed that the reaction might also occur via an SN2 mechanism. There is a substantial solvent effect present for both reaction mechanisms, and their energies of activation are very sensitive toward the solvent model used (implicit, microsolvation, and cluster-continuum). With polarizable continuum model-based methods, the SN2 mechanism becomes less favorable. Applying the cluster-continuum model, using a shell of solvent molecules derived from ab initio molecular dynamics (AIMD) simulations, the gap between the two activation barriers ( ΔΔG‡) is lowered to a few kcal mol(-1) and also shows that the activation entropies (ΔS‡) and volumes (ΔV‡) for the two mechanisms differ substantially. A quantitative assessment of ΔΔG‡ will therefore only be possible using AIMD. A natural bond orbital-analysis gives further insight into the activation of the CF3-reagent by protonation.

SELECTION OF CITATIONS
SEARCH DETAIL
...