Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Omics ; 20(3): 203-212, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38289293

ABSTRACT

Plants should be probably thought of as the most formidable chemical laboratory that can be exploited for the production of an incredible number of molecules with remarkable structural and chemical diversity that cannot be matched by any synthetic libraries of small molecules. The bryophytes chemistry has been neglected for too long, but in the last ten years, this scenery is changing, with several studies being made using extracts from bryophytes, aimed at the characterization of interesting metabolites, with their metabolome screened. The main objective of this study was to analyze the metabolome of Brittonodoxa subpinnata, a native Brazilian moss species, which occurs in the two Brazilian hotspots. GC-MS and LC-MS2 were performed. All extracts were analyzed using the molecular networking approach. The four extracts of B. subpinnata (polar, non-polar, soluble, and insoluble) resulted in 928 features detected within the established parameters. 189 (20.4%) compounds were annotated, with sugars, fatty acids, flavonoids, and biflavonoids as the major constituents. Sucrose was the sugar with the highest quantity; palmitic acid the major fatty acid but with great presence of very long-chain fatty acids rarely found in higher plants, glycosylated flavonoids were the major flavonoids, and biflavonoids majorly composed by units of flavones and flavanones, exclusively found in the cell wall. Despite the high percentage, this work leaves a significant gap for future works using other structure elucidation techniques, such as NMR.


Subject(s)
Biflavonoids , Brazil , Flavonoids/chemistry , Gas Chromatography-Mass Spectrometry , Sugars , Fatty Acids
2.
Photochem Photobiol ; 97(1): 166-179, 2021 01.
Article in English | MEDLINE | ID: mdl-32762087

ABSTRACT

Combined enhanced UV-B radiation and drought may induce different morphological and physiological alterations in plants than either abiotic stress alone. We evaluated morphology, biomass, and primary and secondary metabolism changes in seedlings of two common bean cultivars, IAC Imperador (drought-resistant) and IAC Milênio. To test the hypothesis that cultivars responded differently to combined stresses in a controlled environment, seedlings of the examined been cultivars were exposed to UV-B and/or drought treatments for three weeks. The cultivars behaved differently, especially to the drought treatment, suggesting that they use different mechanisms to cope with unfavorable environmental conditions. IAC Imperador showed a stronger protective response, modifying wax composition and primary metabolism, and improving its resistance to UV-B radiation. For IAC Imperador, the accumulation of cuticular wax and alkane was higher under combined stress but production of primary alcohols was reduced, suggesting a possible fatty acyl switch. Root/shoot length and biomass ratios increased in both cultivars, particularly for the combined stress, indicating a common plant response. We show that these two bean cultivars responded more strongly to UV-B and combined stress than drought alone as evident in changes to their chemistry and biology. This shows the importance of investigating plant morphological and physiological responses to combined stress.


Subject(s)
Phaseolus/physiology , Stress, Physiological , Ultraviolet Rays , Water , Phaseolus/classification , Plant Leaves/physiology , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL
...