Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Article in English | MEDLINE | ID: mdl-39017873

ABSTRACT

The production of renewable materials from alternative sources is becoming increasingly important to reduce the detrimental environmental effects of their non-renewable counterparts and natural resources, while making them more economical and sustainable. Chemical surfactants, which are highly toxic and non-biodegradable, are used in a wide range of industrial and environmental applications harming humans, animals, plants, and other entities. Chemical surfactants can be substituted with biosurfactants (BS), which are produced by microorganisms like bacteria, fungi, and yeast. They have excellent emulsifying, foaming, and dispersing properties, as well as excellent biodegradability, lower toxicity, and the ability to remain stable under severe conditions, making them useful for a variety of industrial and environmental applications. Despite these advantages, BS derived from conventional resources and precursors (such as edible oils and carbohydrates) are expensive, limiting large-scale production of BS. In addition, the use of unconventional substrates such as agro-industrial wastes lowers the BS productivity and drives up production costs. However, overcoming the barriers to commercial-scale production is critical to the widespread adoption of these products. Overcoming these challenges would not only promote the use of environmentally friendly surfactants but also contribute to sustainable waste management and reduce dependence on non-renewable resources. This study explores the efficient use of wastes and other low-cost substrates to produce glycolipids BS, identifies efficient substrates for commercial production, and recommends strategies to improve productivity and use BS in environmental remediation.

2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931416

ABSTRACT

The treatment adherence of narcotics-addicted individuals with reduced incidences of relapse can be enhanced by a sustained drug release formulation of antinarcotics. So far, different drug formulations have been reported with sustained drug release periods of 28 and 35 days. To further enhance this duration, different formulations of injectable hydrogels (IHs) have been developed by combining low molecular weight (LMW) and high molecular weight (HMW) chitosan (CS) with guar gum (GG) and crosslinking them by sodium bi phosphate dibasic. The structural, morphological, and physicochemical properties of LMW-CS IH, and HMW-CS IH were evaluated using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and rheological, swelling, and biodegradation analysis. The HMW-CS IH showed high crosslinking, increased thermal stability, high mechanical strength, elevated swelling, and low biodegradation. The antinarcotic drugs naltrexone (NTX) and disulfiram (DSF) were loaded separately into the HMW-CS IH and LMW-CS IH. The release of NTX and DSF was investigated in phosphate buffer saline (PBS) and ethanol (0.3%, 0.4%, and 0.5%) over a 56-day period using an UV spectrophotometer. The drug release data were tested in zero-order, first-order, and Korsemeyer-Peppas mathematical models. In PBS, all prepared formulations followed non-Fickian drug release, while in ethanol, only NTX HMW-CS IH followed non-Fickian release in all three different concentrations of ethanol.

3.
J Fluoresc ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913090

ABSTRACT

Fluorescent cytotoxic compounds with readout delivery are crucial in chemotherapy. The growing demands of these treatment strategies require the novel heterocyclic molecules with better selectivity alongside fluorescence marker potential. In this context, a series of nine isatin Schiff base derivatives 4a-i were synthesized, characterized and evaluated for UV-visible, fluorescence, thermal and bioanalysis in order to explore the effect of structure on their bioprofiles. The analogue 4d exhibited maximum cytotoxic activity on Hella cells with percentage inhibition of 83% at 50 µM and 100% at 150 µM concentrations while 4c showed minimum cytotoxic activity with the value of 19% at 50 µM and 22% at 150 µM concentrations. Meanwhile, 4g was found to exhibit maximum inhibition potential towards Vero Cells with the percentage inhibition values of 83 at 50 µM concentration. The overall SAR study showed that the para-fluoro-substituted isatin moieties exhibited the appreciable percentage inhibition while the least activity was delivered by the isatin derivatives with para-bromo substitution.

4.
J Fluoresc ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625572

ABSTRACT

This study was based on the development of surface-based photoluminescence sensor for metal detection, quantification, and sample purification employing the solid sensory chip having the capability of metal entrapment. The Co(II), Cu(II) and Hg(II) sensitive fluorescence sensor (TP) was first synthesized and characterized its sensing abilities towards tested metal ions by using fluorescence spectral investigation while the synthesis and complexation of the receptor was confirmed by the chromogenic, optical, spectroscopic and spectrometric analysis. Under optical investigation, the ligand solution exhibited substantial chromogenic changes as well as spectral variations upon reacting with copper, cobalt, and mercuric ions, while these behaviors were not seen for the rest of tested metallic ions i.e., Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+, and Al3+. These colorimetric alterations and spectral shifting could potentially be employed to detect and quantify these specific metal ions. After the establishment of the ligand's selective complexation ability towards selected metals, it was fabricated over the substituted porous silicon surface (FPS) keeping in view of the development of surface-based photoluminescence sensor (TP-FPS) for the selected metal sensation and entrapment to purify the sample just be putting off the metal entrapped sensory solid chip. Surface characterization and ligand fabrication was inspected by plan and cross sectional electron microscopic investigations, vibrational and electronic spectral analysis. The sensitivity of the ligand (TP) in the solution phase metal discrimination was determined by employing the fluorescence titration analysis of the ligand solution after progressive induction of Co2+, Cu2+, and Hg2+, which afford the detection limit values of 2.14 × 10- 8, 3.47 × 10- 8 and 3.13 × 10- 3, respectively. Concurrently, photoluminescence titration of the surface fabricated sensor (TP-FPS) revealed detection limit values of 3.14 × 10- 9, 7.43 × 10- 9, and 8.21 × 10- 4, respectively, for the selected metal ions.

5.
J Fluoresc ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457078

ABSTRACT

The design and development of a fluorescence sensor aimed at detecting and quantifying trace amounts of toxic transition metal ions within environmental, biological, and aquatic samples has garnered significant attention from diagnostic and testing laboratories, driven by the imperative to mitigate the health risks associated with these contaminants. In this context, we present the utilization of a heterocyclic symmetrical Schiff Base derivative for the purpose of fluorogenic and chromogenic detection of Co2+, Cu2+ and Hg2+ ions. The characterization of the ligand involved a comprehensive array of techniques, including physical assessments, optical analyses, NMR, FT-IR, and mass spectrometric examinations. The mechanism of ligand-metal complexation was elucidated through the utilization of photophysical parameters and FT-IR spectroscopic analysis, both before and after the interaction between the ligand and the metal salt solution. The pronounced alterations observed in absorption and fluorescence spectra, along with the distinctive chromogenic changes, following treatment with Co2+, Cu2+ and Hg2+, affirm the successful formation of complexes between the ligands and the treated metal ions. Notably, the receptor's complexation response exhibited selectivity towards Co(II), Cu(II), and Hg(II), with no observed chromogenic changes, spectral variations, or band shifts for the various tested metal ions, including Na+, Ag+, Ni2+, Mn2+, Pd2+, Pb2+, Cd2+, Zn2+, Sn2+, Fe2+, Fe3+, Cr3+ and Al3+. This absence of interaction between these metal ions and the ligand could be attributed to their compact or inadequately conducive conduction bands for complexation with the ligand's structural composition. To quantify the sensor's efficacy, fluorescence titration spectra were employed to determine the detection limits for Co2+, Cu2+ and Hg2+, yielding values of 2.92 × 10-8, 8.91 × 10-8, and 4.39 × 10-3 M, respectively. The Benesi-Hildebrand plots provided association constant values for the ligand-cobalt, ligand-copper, and ligand-mercury complexes as 0.74, 2.52, and 13.89 M-1, respectively.

6.
Int J Infect Dis ; 136: 22-28, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37652093

ABSTRACT

OBJECTIVES: Interpreting real-time reverse transcription-polymerase chain reaction (rRT-PCR) results for human avian influenza A virus (AIV) detection in contaminated settings like live bird markets (LBMs) without serology or viral culture poses a challenge. METHODS: During February-March 2012 and November 2012-February 2013, we screened workers at nine LBMs in Dhaka, Bangladesh, to confirm molecular detections of AIV RNA in respiratory specimens with serology. We tested nasopharyngeal (NP) and throat swabs from workers with influenza-like illness (ILI) and NP, throat, and arm swabs from asymptomatic workers for influenza virus by rRT-PCR and sera for seroconversion and antibodies against HPAI A(H5N1) and A(H9N2) viruses. RESULTS: Among 1273 ILI cases, 34 (2.6%) had A(H5), 56 (4%) had A(H9), and six (0.4%) had both A(H5) and A(H9) detected by rRT-PCR. Of 192 asymptomatic workers, A(H5) was detected in eight (4%) NP and 38 (20%) arm swabs. Of 28 ILI cases with A(H5) or A(H9) detected, none had evidence of seroconversion, but one (3.5%) and 12 (43%) were seropositive for A(H5) and A(H9), respectively. CONCLUSION: Detection of AIV RNA in respiratory specimens from symptomatic and asymptomatic LBM workers without evidence of seroconversion or virus isolation suggests environmental contamination, emphasizing caution in interpreting rRT-PCR results in high viral load settings.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/diagnosis , Influenza A Virus, H5N1 Subtype/genetics , Bangladesh/epidemiology , Chickens , RNA
7.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37513820

ABSTRACT

The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.

8.
Materials (Basel) ; 16(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37445090

ABSTRACT

A commercially viable metal-dielectric-metal configured triple-band metamaterial absorber is offered in this paper. It is an aggregation of four compact symmetric circles, with a swastika-shaped metal structure, which are bonded by two split-ring resonators (SRRs). Copper (annealed) of electrical conductivity 5.8 × 107 Sm-1 is used for the ground plate and resonator portion of the top layer and an FR 4 dielectric of permittivity 4.3 is used as a substrate. The structural parameters of the unit cell were determined by a trial and error method. FIT-based 3D simulation software (CST microwave studio, 2019 version was used to characterize the proposed perfect metamaterial absorber (PMA). Three resonance peaks were observed at frequencies 3.03, 5.83 and 7.23 GHz with an absorbance of 99.84%, 99.03% and 98.26%, respectively. The numerical result has been validated by some authentic validation methods. Finally, a microwave network analyzer (PNA) of Agilent N5227 with waveguide ports were deployed for measurement. The simulation and experimental results show better harmony. The proposed PMA has a unique design and a small dimension with higher absorption compared to other contemporary studies. This special type of polarization, insensitive S- and C-band PMA, is designed for a telecommunication system via full-time raw satellite and radar feeds.

9.
Materials (Basel) ; 16(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36770144

ABSTRACT

A split-ring resonator (SRR)-based power tiller wheel-shaped quad-band ℇ-negative metamaterial is presented in this research article. This is a new compact metamaterial with a high effective medium ratio (EMR) designed with three modified octagonal split-ring resonators (OSRRs). The electrical dimension of the proposed metamaterial (MM) unit cell is 0.086λ × 0.086λ, where λ is the wavelength calculated at the lowest resonance frequency of 2.35 GHz. Dielectric RT6002 materials of standard thickness (1.524 mm) were used as a substrate. Computer simulation technology (CST) Microwave Studio simulator shows four resonance peaks at 2.35, 7.72, 9.23 and 10.68 GHz with magnitudes of -43.23 dB -31.05 dB, -44.58 dB and -31.71 dB, respectively. Moreover, negative permittivity (ℇ) is observed in the frequency ranges of 2.35-3.01 GHz, 7.72-8.03 GHz, 9.23-10.02 GHz and 10.69-11.81 GHz. Additionally, a negative refractive index is observed in the frequency ranges of 2.36-3.19 GHz, 7.74-7.87 GHz, 9.26-10.33 GHz and 10.70-11.81 GHz, with near-zero permeability noted in the environments of these frequency ranges. The medium effectiveness indicator effective medium ratio (EMR) of the proposed MM is an estimated 11.61 at the lowest frequency of 2.35 GHz. The simulated results of the anticipated structure are validated by authentication processes such as array orientation, HFSS and ADS for an equivalent electrical circuit model. Given its high EMR and compactness in dimensions, the presented metamaterial can be used in S-, C- and X-band wireless communication applications.

10.
Emerg Infect Dis ; 29(2): 393-396, 2023 02.
Article in English | MEDLINE | ID: mdl-36692447

ABSTRACT

Spillovers of Nipah virus (NiV) from Pteropus bats to humans occurs frequently in Bangladesh, but the risk for spillover into other animals is poorly understood. We detected NiV antibodies in cattle, dogs, and cats from 6 sites where spillover human NiV infection cases occurred during 2013-2015.


Subject(s)
Chiroptera , Henipavirus Infections , Nipah Virus , Humans , Animals , Dogs , Cattle , Bangladesh/epidemiology , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Disease Outbreaks
11.
Front Chem ; 11: 1327212, 2023.
Article in English | MEDLINE | ID: mdl-38179238

ABSTRACT

Efficient and cost-effective biosorbents derived from biowaste are highly demanding to handle various environmental challenges, and demonstrate the remarkable synergy between sustainability and innovation. In this study, the extraction of uranium U(VI) was investigated on biowaste activated carbon (BAC) obtained by chemical activation (phosphoric acid) using Albizia Lebbeck pods as biowaste. The biowaste powder (BP), biowaste charcoal (BC) and BAC were evaluated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) with nitrogen adsorption for thermal properties, chemical structures, porosity and surface area, respectively. The pHPZC for acidic or basic nature of the surface and X-ray diffraction (XRD) analysis were performed for BAC. The morphological and elemental analysis were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The extraction of uranium U(VI) ions from aqueous solutions using BAC as sorbent was investigated by using different variables such as pH, contact time, initial uranium U(VI) concentration and BAC dose. The highest adsorption (90.60% was achieved at 0.5 g BAC dose, 2 h contact time, pH 6, 10 ppm initial U(VI) concentration and with 200 rpm shaking speeds. The production of this efficient adsorbent from biowaste could be a potential step forward in adsorption of uranium to meet the high demand of uranium for nuclear energy applications.

12.
Materials (Basel) ; 15(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234062

ABSTRACT

Cement clinkers containing mainly belite (ß-C2S as a model crystal), replacing alite, offer a promising solution for the development of environmentally friendly solutions to reduce the high level of CO2 emissions in the production of Portland cement. However, the much lower reactivity of belite compared to alite limits the widespread use of belite cements. Therefore, this work presents a fundamental atomistic computational approach for comprehending and quantifying the mesoscopic forward dissolution rate of ß-C2S, applied to two reactive crystal facets of (100) and (1¯00). For this, an atomistic kinetic Monte Carlo (KMC) upscaling approach for cement clinker was developed. It was based on the calculated activation energies (ΔG*) under far-from-equilibrium conditions obtained by a molecular dynamic simulation using the combined approach of ReaxFF and metadynamics, as described in the Part 1 paper in this Special Issue. Thus, the individual atomistic dissolution rates were used as input parameters for implementing the KMC upscaling approach coded in MATLAB to study the dissolution time and morphology changes at the mesoscopic scale. Four different cases and 21 event scenarios were considered for the dissolution of calcium atoms (Ca) and silicate monomers. For this purpose, the (100) and (1¯00) facets of a ß-C2S crystal were considered using periodic boundary conditions (PBCs). In order to demonstrate the statistical nature of the KMC approach, 40 numerical realizations were presented. The major findings showed a striking layer-by-layer dissolution mechanism in the case of an ideal crystal, where the total dissolution rate was limited by the much slower dissolution of the silicate monomer compared to Ca. The introduction of crystal defects, namely cutting the edges at two crystal boundaries, increased the overall average dissolution rate by a factor of 519.

13.
Materials (Basel) ; 15(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36143700

ABSTRACT

A major concern in the modern cement industry is considering how to minimize the CO2 footprint. Thus, cements based on belite, an impure clinker mineral (CaO)2SiO2 (C2S in cement chemistry notation), which forms at lower temperatures, is a promising solution to develop eco-efficient and sustainable cement-based materials, used in enormous quantities. The slow reactivity of belite plays a critical role, but the dissolution mechanisms and kinetic rates at the atomistic scale are not known completely yet. This work aims to understand the dissolution behavior of different facets of ß-C2S providing missing input data and an upscaling modeling approach to connect the atomistic scale to the sub-micro scale. First, a combined ReaxFF and metadynamics-based molecular dynamic approach are applied to compute the atomistic forward reaction rates (RD) of calcium (Ca) and silicate species of (100) facet of ß-C2S considering the influence of crystal facets and crystal defects. To minimize the huge number of atomistic events possibilities, a generalized approach is proposed, based on the systematic removal of nearest neighbors' crystal sites. This enables us to tabulate data on the forward reaction rates of most important atomistic scenarios, which are needed as input parameters to implement the Kinetic Monte Carlo (KMC) computational upscaling approach. The reason for the higher reactivity of the (100) facet compared to the (010) is explained.

14.
Molecules ; 27(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36144642

ABSTRACT

Organic solar cells are famous for their cheap solution processing. Their industrialization needs fast designing of efficient materials. For this purpose, testing of large number of materials is necessary. Machine learning is a better option due to cheaper prediction of power conversion efficiencies. In the present work, machine learning was used to predict power conversion efficiencies. Experimental data were collected from the literature to feed the machine learning models. A detailed data visualization analysis was performed to study the trends of the dataset. The relationship between descriptors and power conversion efficiency was quantitatively determined by Pearson correlations. The importance of features was also determined using feature importance analysis. More than 10 machine learning models were tried to find better models. Only the two best models (random forest regressor and bagging regressor) were selected for further analysis. The prediction ability of these models was high. The coefficient of determination (R2) values for the random forest regressor and bagging regressor models were 0.892 and 0.887, respectively. The Shapley additive explanation (SHAP) method was used to identify the impact of descriptors on the output of models.


Subject(s)
Data Visualization , Machine Learning , Research Design
15.
Materials (Basel) ; 15(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806573

ABSTRACT

The surface plasmon resonance in low-dimensional semiconducting materials is a source of valuable scientific phenomenon which opens widespread prospects for novel applications. A systematic study to shed light on the propagation of plasmons at the interface of GaN nanowire is reported. A comprehensive analysis of the interaction of light with GaN nanowires and the propagation of plasmons is carried out to uncover further potentials of the material. The results obtained on the basis of calculations designate the interaction of light with nanowires, which produced plasmons at the interface that propagate along the designed geometry starting from the center of the nanowire towards its periphery, having more flux density at the center of the nanowire. The wavelength of light does not affect the propagation of plasmons but the flux density of plasmons appeared to increase with the wavelength. Similarly, an increment in the flux density of plasmons occurs even in the case of coupled and uncoupled nanowires with wavelength, but more increment occurs in the case of coupling. Further, it was found that an increase in the number of nanowires increases the flux density of plasmons at all wavelengths irrespective of uniformity in the propagation of plasmons. The findings point to the possibility of tuning the plasmonics by using a suitable number of coupled nanowires in assembly.

16.
Comput Biol Med ; 148: 105849, 2022 09.
Article in English | MEDLINE | ID: mdl-35870317

ABSTRACT

BACKGROUND AND OBJECTIVE: For the emerging significance of mental stress, various research directives have been established over time to understand better the causes of stress and how to deal with it. In recent years, the rise of video gameplay has been unprecedented, further triggered by the lockdown imposed due to the COVID-19 pandemic. Several researchers and organizations have contributed to the practical analysis of the impacts of such extended periods of gameplay, which lacks coordinated studies to underline the outcomes and reflect those in future game designing and public awareness about video gameplay. Investigations have mainly focused on the "gameplay stress" based on physical syndromes. Some studies have analyzed the effects of video gameplay with Electroencephalogram (EEG), Magnetic resonance imaging (MRI), etc., without concentrating on the relaxation procedure after video gameplay. METHODS: This paper presents an end-to-end stress analysis for video gaming stimuli using EEG. The power spectral density (PSD) of the Alpha and Beta bands is computed to calculate the Beta-to-Alpha ratio (BAR). The Alpha and Beta band power is computed, and the Beta-to-Alpha band power ratio (BAR) has been determined. In this article, BAR is used to denote mental stress. Subjects are chosen based on various factors such as gender, gameplay experience, age, and Body mass index (BMI). EEG is recorded using Scan SynAmps2 Express equipment. There are three types of video gameplay: strategic, puzzle, and combinational. Relaxation is accomplished in this study by using music of various pitches. Two types of regression analysis are done to mathematically model stress and relaxation curve. Brain topography is rendered to indicate the stressed and relaxed region of the brain. RESULTS: In the relaxed state, the subjects have BAR 0.701, which is considered the baseline value. Non-gamer subjects have an average BAR of 2.403 for 1 h of strategic video gameplay, whereas gamers have 2.218 BAR concurrently. After 12 minutes of listening to low-pitch music, gamers achieved 0.709 BAR, which is nearly the baseline value. In comparison to Quartic regression, the 4PL symmetrical sigmoid function performs regression analysis with fewer parameters and computational power. CONCLUSION: Non-gamers experience more stress than gamers, whereas strategic games stress the human brain more. During gameplay, the beta band in the frontal region is mostly activated. For relaxation, low pitch music is the most useful medium. Residual stress is evident in the frontal lobe when the subjects have listened to high pitch music. Quartic regression and 4PL symmetrical sigmoid function have been employed to find the model parameters of the relaxation curve. Among them, quartic regression performs better in terms of Akaike information criterion (AIC) and R2 measure.


Subject(s)
COVID-19 , Video Games , Communicable Disease Control , Electroencephalography , Humans , Pandemics
17.
Emerg Infect Dis ; 28(7): 1384-1392, 2022 07.
Article in English | MEDLINE | ID: mdl-35731130

ABSTRACT

Knowledge of the dynamics and genetic diversity of Nipah virus circulating in bats and at the human-animal interface is limited by current sampling efforts, which produce few detections of viral RNA. We report a series of investigations at Pteropus medius bat roosts identified near the locations of human Nipah cases in Bangladesh during 2012-2019. Pooled bat urine was collected from 23 roosts; 7 roosts (30%) had >1 sample in which Nipah RNA was detected from the first visit. In subsequent visits to these 7 roosts, RNA was detected in bat urine up to 52 days after the presumed exposure of the human case-patient, although the probability of detection declined rapidly with time. These results suggest that rapidly deployed investigations of Nipah virus shedding from bat roosts near human cases could increase the success of viral sequencing compared with background surveillance and could enhance understanding of Nipah virus ecology and evolution.


Subject(s)
Chiroptera , Henipavirus Infections , Nipah Virus , Animals , Bangladesh/epidemiology , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Humans , Nipah Virus/genetics , RNA, Viral/genetics
18.
Environ Sci Pollut Res Int ; 29(48): 73461-73479, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35624364

ABSTRACT

Mitigating the effects of environmental deterioration requires a focus on not just CO2 emissions from energy consumption, but also environmental pollution from industry sectors. To reach this goal, recent studies have extended ecological footprint (EF) analysis to identify the ecological drivers of various key industry sectors. The role of the phosphorus (P) industry on the EF within the environmental Kuznets curve (EKC) framework for China is the emphasis of this study. Autoregressive distributive lag (ARDL) as well as the impulse response function and robustness analysis were used to consider a time from 1985 to 2018. The study verifies the EKC hypothesis for China in both the long and the short run, and indispensable determinants are proposed to be included to assure the model's fitness and robustness when conducting EF analysis of industry sectors. Energy consumption-based carbon emissions have been verified as the dominant contributor to EF, but P use and urbanization have a significant lagged positive influence on EF in the short run. P exports, in particular, have been highlighted as a critical driver of the EF of China's P industry. The conducted frequency domain causality test reinforced the above findings and demonstrated bidirectional causality at different frequencies. This work suggests that formulating plausible P export policies to alleviate the conflict between the output of China's P industry and the environmental sustainability of this industry are necessary. In this context, "multidisciplinary, multidimensional, and practical solutions" are most desirable for sustainable P management.


Subject(s)
Carbon Dioxide , Economic Development , Carbon , Carbon Dioxide/analysis , China , Phosphorus
19.
Environ Sci Pollut Res Int ; 29(44): 66793-66807, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35508850

ABSTRACT

In this study, we use Energy Performance Certificate (EPC) information to investigate the effect of energy efficiency on the selling price of Swedish tenant-owned apartments. While there is a large body of literature on how energy efficiency affects the sales price of single-family houses, none has exclusively focused on tenant-owned apartments. For owners of tenant-owned apartments in Sweden, heating is for a large share included in the monthly fee paid to the tenant association, which usually does not change on a short-term basis. This raises the question whether homebuyers' incentives for acquiring energy-efficient tenant-owned apartments are large enough to be capitalized into the prices. By hedonic models and matching methods, we found mixed results. In our most optimistic scenarios, tenant-owned apartments enclosed in energy-efficient buildings are sold with a premium of approximately 0.8 to 1.2% compared to apartments in non-efficient buildings. The results in this study are not robust to all model specifications and vary across regions. In comparison with recent studies using data for single-family houses in Sweden, our detected capitalization is smaller. Our results highlight a need for targeted measures if EPCs are to be fully capitalized in prices for all dwelling types in which buyers have different economic incentives for reducing their energy consumption.


Subject(s)
Conservation of Energy Resources , Housing , Heating , Sweden
20.
Materials (Basel) ; 15(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35207945

ABSTRACT

The current contribution proposes a multi-scale bridging modeling approach for the dissolution of crystals to connect the atomistic scale to the (sub-) micro-scale. This is demonstrated in the example of dissolution of portlandite, as a relatively simple benchmarking example for cementitious materials. Moreover, dissolution kinetics is also important for other industrial processes, e.g., acid gas absorption and pH control. In this work, the biased molecular dynamics (metadynamics) coupled with reactive force field is employed to calculate the reaction path as a free energy surface of calcium dissolution at 298 K in water from the different crystal facets of portlandite. It is also explained why the reactivity of the (010), (100), and (11¯0) crystal facet is higher compared to the (001) facet. In addition, the influence of neighboring Ca crystal sites arrangements on the atomistic dissolution rates is explained as necessary scenarios for the upscaling. The calculated rate constants of all atomistic reaction scenarios provided an input catalog ready to be used in an upscaling kinetic Monte Carlo (KMC) approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...