Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904480

ABSTRACT

Dendroochreatene (1), a new phenanthrene derivative with a spirolactone ring, was isolated from the whole Dendrobium ochreatum plant together with 11 known compounds (2-12). The structure of the new compound was elucidated spectroscopically and phenolic compounds were firstly reported from D. ochreatum. Moscatilin (4), major compound isolated from D. ochreatum, was found to be cytotoxic toward H460 lung-cancer cells, with an IC50 value of 147.3 ± 0.9 µM, while loddigesiinol C (7), C-α-methoxy derivative was inactive.

2.
Viruses ; 13(6)2021 05 29.
Article in English | MEDLINE | ID: mdl-34072421

ABSTRACT

AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called "latency." Recently, a promising approach, the "Shock and Kill" strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The "Shock and Kill" concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Antiviral Agents/therapeutic use , HIV-1/drug effects , Histone Acetyltransferases/antagonists & inhibitors , Virus Activation/drug effects , Virus Latency/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Humans , Transcription Factors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...