Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Phys Technol ; 17(1): 219-229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160437

ABSTRACT

This study aims to predict isocentric stability for stereotactic body radiation therapy (SBRT) treatments using machine learning (ML), covers the challenges of manual assessment and computational time for quality assurance (QA), and supports medical physicists to enhance accuracy. The isocentric parameters for collimator (C), gantry (G), and table (T) tests were conducted with the RUBY phantom during QA using TrueBeam linac for SBRT. This analysis combined statistical features from the IsoCheck EPID software. Five ML models, including logistic regression (LR), decision tree (DT), random forest (RF), naive Bayes (NB), and support vector machines (SVM), were used to predict the outcome of the QA procedure. 247 Winston-Lutz (WL) tests were collected from 2020 to 2022. In our study, both DT and RF achieved the highest score on test accuracy (Acc. test) ranging from 93.5% to 99.4%, and area under curve (AUC) values from 90 to 100% on three modes (C, G, and T). The precision, recall, and F1 scores indicate the DT model consistently outperforms other ML models in predicting isocenter stability deviation in QA. The QA assessment using ML models can assist error prediction early to avoid potential harm during SBRT and ensure safe and effective patient treatments.


Subject(s)
Radiosurgery , Humans , Radiosurgery/methods , Bayes Theorem , Particle Accelerators , Software , Machine Learning
2.
Comput Biol Med ; 144: 105253, 2022 05.
Article in English | MEDLINE | ID: mdl-35245696

ABSTRACT

BACKGROUND AND OBJECTIVES: Over the past two decades, medical imaging has been extensively apply to diagnose diseases. Medical experts continue to have difficulties for diagnosing diseases with a single modality owing to a lack of information in this domain. Image fusion may be use to merge images of specific organs with diseases from a variety of medical imaging systems. Anatomical and physiological data may be included in multi-modality image fusion, making diagnosis simpler. It is a difficult challenge to find the best multimodal medical database with fusion quality evaluation for assessing recommended image fusion methods. As a result, this article provides a complete overview of multimodal medical image fusion methodologies, databases, and quality measurements. METHODS: In this article, a compendious review of different medical imaging modalities and evaluation of related multimodal databases along with the statistical results is provided. The medical imaging modalities are organized based on radiation, visible-light imaging, microscopy, and multimodal imaging. RESULTS: The medical imaging acquisition is categorized into invasive or non-invasive techniques. The fusion techniques are classified into six main categories: frequency fusion, spatial fusion, decision-level fusion, deep learning, hybrid fusion, and sparse representation fusion. In addition, the associated diseases for each modality and fusion approach presented. The quality assessments fusion metrics are also encapsulated in this article. CONCLUSIONS: This survey provides a baseline guideline to medical experts in this technical domain that may combine preoperative, intraoperative, and postoperative imaging, Multi-sensor fusion for disease detection, etc. The advantages and drawbacks of the current literature are discussed, and future insights are provided accordingly.


Subject(s)
Image Processing, Computer-Assisted , Multimodal Imaging , Algorithms , Benchmarking , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...