Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 10(1): 77-85, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15306069

ABSTRACT

Sintering of a palladium catalyst supported on alumina (Al2O3) in an oxidizing environment was studied by in situ transmission electron microscopy (TEM). In the case of a fresh catalyst, sintering of Pd particles on an alumina surface in a 500 mTorr steam environment happened via traditional ripening or migration and coalescence mechanisms and was not significant unless heating above 500 degrees C. After the catalyst was used for the hydrogenation of alkynes, TEM coupled with convergent beam electron diffraction and electron energy loss spectroscopy analysis revealed that most of the Pd particles were lifted from the alumina surface by hydrocarbon buildup. This dramatically different morphology totally changed the sintering mechanism of Pd particles during the regeneration process. Catalytic gasification of hydrocarbon around these particles in an oxidizing environment allowed the Pd particles to move around and coalesce with each other at temperatures as low as 350 degrees C. For catalysts heating under 500 mTorr steam at 350 degrees C, steam stripped hydrocarbon catalytically at the beginning, but the reaction stopped after 4 h. Heating in air resulted in both catalytic and noncatalytic stripping of hydrocarbon.


Subject(s)
Aluminum/chemistry , Microscopy, Electron/methods , Nanotechnology/methods , Palladium/chemistry , Acetylene/chemistry , Catalysis , Hot Temperature , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...