Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26846, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486760

ABSTRACT

The assessment of fish passage conditions in hydroelectric turbines consists of identifying and quantifying physical magnitudes leading to increased risks of injury of fish passing through turbines in operation. Such assessments are usually carried out either with the use of computer-based methods during design or with field testing of live fish and sensors passing through prototypes. A method in between consists of test rig experimentation, which is critical for testing fish-focused design concepts and offers the opportunity for implementing the most effective design measures for improved fish survivability. However, fish-related assessments in test rigs are not sufficiently documented for industrial applications. This work presents the main findings of an experimental campaign to quantify fish-related hydraulic magnitudes in a physical model of a Kaplan turbine in a commercial test rig. Two operating conditions were tested by releasing miniaturized autonomous sensor devices (termed Sensor Fish Mini) at the turbine intake flow, passing them through the runner in motion and recovering them at the draft tube exit. During passage, time series of acceleration, absolute pressure and rotational velocity were recorded. The recordings were then interpreted to determine the magnitude and likely location of hydraulic stressors hazardous to fish. The statistical tests on the reported measurements indicated that low pressure, collisions on the runner and rotations in the draft tube were not different between the two tested operating points. On the other hand, pressure drop and collision rates on the distributor differed considerably as a function of net head. The outcomes of this investigation showed that test rig evaluations of fish-related properties with Sensor Fish Mini can contribute to an evidence-based development of turbine geometries designed for providing safer passage conditions. Future work will investigate the scaling of test rig measurements to hydraulically equivalent magnitudes in the prototype and their biological consequences.

2.
J Vis Exp ; (200)2023 10 13.
Article in English | MEDLINE | ID: mdl-37902317

ABSTRACT

Fish may experience injuries and mortality when they pass through hydraulic conveyances at hydropower dams, even if these conveyances are designed to be fish-friendly, such as downstream bypass systems, modified spillways and turbines. The main methods used to study fish passage conditions in hydraulic structures involve direct, in situ testing using Sensor Fish technology and live fish. Sensor Fish data helps identify physical stressors and their locations in the fish passage environment, while live fish are assessed for injuries and mortality. Balloon tags, which are self-inflating balloons attached externally to Sensor Fish and live fish, aid in their recovery after passing through hydraulic structures. This article focuses on the development of balloon tags with varying numbers of dissolvable, vegetable-based capsules containing a mixture of oxalic acid, sodium bicarbonate powders, and water at two different temperatures. Our research determined that balloon tags with three capsules, injected with 5 mL of water at 18.3 °C, consistently achieved the desired balloon volume. These tags had a mean inflation volume of 114 cm3 with a standard deviation of 1.2 cm3. Among the balloon tags injected with water at 18.3 °C, it was observed that the two-capsule balloon tags took the longest time to reach full inflation. In addition, the four-capsule balloon tags demonstrated a faster inflation start time, while the three-capsule balloon tags demonstrated a faster deflation start time. Overall, this approach proves to be effective for validating the performance of new technologies, improving turbine design, and making operational decisions to enhance fish passage conditions. It serves as a valuable tool for research and field evaluations, aiding in the refinement of both the design and operation of hydraulic structures.


Subject(s)
Fishes , Water , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...