Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Ind Health ; 34(12): 860-872, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30345898

ABSTRACT

The extensive use of mobile phones worldwide has raised increasing concerns about the effects of electromagnetic radiation (EMR) on the brain due to the proximity of the mobile phone to the head and the appearance of several adverse neurological effects after mobile phone use. It has been hypothesized that the EMR-induced neurological effects may be mediated by amino acid neurotransmitters. Thus, the present study investigated the effect of EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) on the concentrations of amino acid neurotransmitters (glutamic acid, aspartic acid, gamma aminobutyric acid, glycine, taurine, and the amide glutamine) in the hippocampus, striatum, and hypothalamus of juvenile and young adult rats. The juvenile and young adult animals were each divided into two groups: control rats and rats exposed to EMR 1 h daily for 1, 2, and 4 months. A subgroup of rats were exposed daily to EMR for 4 months and then left without exposure for 1 month to study the recovery from EMR exposure. Amino acid neurotransmitters were measured in the hippocampus, striatum, and hypothalamus using high-performance liquid chromatography. Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure.


Subject(s)
Amino Acids/radiation effects , Brain/radiation effects , Electromagnetic Radiation , Neurotransmitter Agents/radiation effects , Age Factors , Animals , Cell Phone , Chromatography, High Pressure Liquid , Electromagnetic Fields/adverse effects , Male , Rats , Rats, Wistar
2.
Electromagn Biol Med ; 36(1): 63-73, 2017.
Article in English | MEDLINE | ID: mdl-27400086

ABSTRACT

Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm2, SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.


Subject(s)
Catechin/analogs & derivatives , Electromagnetic Radiation , Hippocampus/metabolism , Neostriatum/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Tea/chemistry , Animals , Antioxidants/pharmacology , Catechin/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Male , Neostriatum/drug effects , Neostriatum/radiation effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...