Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 355: 124242, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810684

ABSTRACT

Water quality index (WQI) is a well-established tool for assessing the overall quality of fresh inland-waters. However, the effectiveness of real-time assessment of aquatic ecosystems using the WQI is usually impacted by the absence of some water quality parameters in which their accurately in-situ measurements are impossible and face difficulties. Using a rich water quality dataset spanned from 1980 to 2023, we employed four machine learning-based models to estimate the British Colombia WQI (BCWQI) in the Lake Päijänne, Finland, without parameters like chemical oxygen demand (COD) and total phosphorus (TP). Measurement of both COD and TP is time-consuming, needs laboratory equipment and labor costs, and faces sampling-related difficulties. Our results suggest the machine learning-based models successfully estimate the BCWQI in Lake Päijänne when TP and COD are omitted from the dataset. The long-short term memory model is the least sensitive model to exclusion of COD and TP from inputs. This model with the coefficient of determination and root-mean squared error of 0.91 and 0.11, respectively, outperforms the support vector regression, random forest, and neural network models in real-time estimation of the BCWQI in Lake Päijänne. Incorporation of BCWQI with the machine learning-based models could enhance assessment of overall quality of inland-waters with a limited database in a more economical and time-saving way. Our proposed method is an effort to replace the traditional offline water quality assessment tools with a real-time model and improve understanding of decision-makers on the effectiveness of management practices on the changes in lake water quality.


Subject(s)
Ecosystem , Environmental Monitoring , Lakes , Machine Learning , Water Quality , Environmental Monitoring/methods , Lakes/chemistry , Finland , Phosphorus/analysis , Biological Oxygen Demand Analysis/methods , Water Pollutants, Chemical/analysis
2.
Waste Manag ; 175: 30-41, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38154165

ABSTRACT

An artificial neural network (ANN) model called long-short term memory (LSTM), coupled with a genetic algorithm (GA) for feature selection, was used to predict biogas production of large-scale anaerobic digesters (ADs) of Tehran South Wastewater Treatment Plant (Iran), with a biogas production of approximately 30,000 Nm3/d. In order to employ the real conditions, the hydraulic retention time (HRT) of the ADs (21 days) was considered as the LSTM look-back window. To evaluate the model predictions, three different scenarios were defined. In the first scenario, the model predicted the produced biogas by using raw wastewater characteristics and reached the coefficient of determination of R2 = 0.84. The GA selected four out of eleven parameters of raw wastewater, including loads of BOD5, COD, TSS, and TN (kg/d), as the most informative data for the model. In the second scenario, the model predicted the produced biogas by employing the data of the thickened sludge streams entering the ADs and yielded a higher accuracy (R2 = 0.89). In this scenario, GA selected two out of six parameters of the sludge streams, including total flow rate (m3/d) and average solids content (w/w%). Finally, in the third scenario, by putting the parameters of the two previous scenarios together, the model's prediction accuracy increased slightly (R2 = 0.90). The results demonstrated that the GA-LSTM modeling technique could achieve reliable performance in predicting biogas production of large-scale ADs by including HRT in modeling procedure. It was also found that the raw wastewater characteristics severely affect AD behavior and can be successfully used as the input data of the AD models.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Biofuels , Memory, Short-Term , Bioreactors , Iran , Neural Networks, Computer , Waste Disposal, Fluid/methods , Methane/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...