Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters










Publication year range
1.
Curr Genomics ; 11(6): 379-86, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21358981

ABSTRACT

Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

2.
Mol Biol Evol ; 24(12): 2657-68, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17898361

ABSTRACT

The diploid wheat Triticum monococcum L. (einkorn) was among the first crops domesticated by humans in the Fertile Crescent 10,000 years ago. During the last 5,000 years, it was replaced by tetraploid and hexaploid wheats and largely forgotten by modern breeders. Einkorn germplasm is thus devoid of breeding bottlenecks and has therefore preserved in unfiltered form the full spectrum of genetic variation that was present during its domestication. We investigated haplotype variation among >12 million nucleotides sequenced at 18 loci across 321 wild and 92 domesticate T. monococcum lines. In contrast to previous studies of cereal domestication, we sampled hundreds of wild lines, rather than a few dozen. Unexpectedly, our broad sample of wild lines reveals that wild einkorn underwent a process of natural genetic differentiation, most likely an incipient speciation, prior to domestication. That natural differentiation was previously overlooked within wild einkorn, but it bears heavily upon inferences concerning the domestication process because it brought forth 3 genetically, and to some extent morphologically, distinct wild einkorn races that we designate here as alpha, beta, and gamma. Only one of those natural races, beta, was exploited by humans for domestication. Nucleotide diversity and haplotype diversity in domesticate einkorn is higher than in its wild sister group, the einkorn beta race, indicating that einkorn underwent no reduction of diversity during domestication. This is in contrast to findings from previous studies of domestication history among more intensely bred crop species. Taken together with archaeological findings from the Fertile Crescent, the data indicate that a specific wild einkorn race that arose without human intervention was subjected to multiple independent domestication events.


Subject(s)
Agriculture , Genetic Variation , Nucleotides/genetics , Triticum/genetics , Geography , Haplotypes , Models, Genetic , Phenotype , Sequence Analysis, DNA
3.
Mol Biol Evol ; 24(1): 217-27, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17053048

ABSTRACT

The origin of modern wheats involved alloploidization among related genomes. To determine if Aegilops speltoides was the donor of the B and G genomes in AABB and AAGG tetraploids, we used a 3-tiered approach. Using 70 amplified fragment length polymorphism (AFLP) loci, we sampled molecular diversity among 480 wheat lines from their natural habitats encompassing all S genome Aegilops, the putative progenitors of wheat B and G genomes. Fifty-nine Aegilops representatives for S genome diversity were compared at 375 AFLP loci with diploid, tetraploid, and 11 nulli-tetrasomic Triticum aestivum wheat lines. B genome-specific markers allowed pinning the origin of the B genome to S chromosomes of A. speltoides, while excluding other lineages. The outbreeding nature of A. speltoides influences its molecular diversity and bears upon inferences of B and G genome origins. Haplotypes at nuclear and chloroplast loci ACC1, G6PDH, GPT, PGK1, Q, VRN1, and ndhF for approximately 70 Aegilops and Triticum lines (0.73 Mb sequenced) reveal both B and G genomes of polyploid wheats as unique samples of A. speltoides haplotype diversity. These have been sequestered by the AABB Triticum dicoccoides and AAGG Triticum araraticum lineages during their independent origins.


Subject(s)
Genome, Plant , Hybridization, Genetic , Poaceae/genetics , Triticum/genetics , Crosses, Genetic , Haplotypes , Phylogeny , Polymorphism, Restriction Fragment Length , Polyploidy
4.
Genome ; 49(4): 297-305, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16699549

ABSTRACT

The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.


Subject(s)
Evaluation Studies as Topic , Gene Dosage , Genome, Plant , Triticum/classification , Triticum/genetics , DNA Fingerprinting/methods , Genetic Markers , Genetic Variation , Nucleic Acid Amplification Techniques/methods , Phylogeny
5.
Mol Genet Genomics ; 274(4): 364-72, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16133164

ABSTRACT

The resurrection plant (Craterostigma plantagineum) is desiccation tolerant. However, callus derived from this plant, when propagated in vitro, requires exogenously applied abscisic acid (ABA) in order to survive desiccation. Treatment of callus tissue with ABA induces most of the genes that are induced by dehydration in the whole plant. This property has been exploited for the isolation of mutants that show dominant phenotypes resulting from the ectopic expression of endogenous genes induced by the insertion of a foreign promoter. Here we describe new T-DNA tagged Craterostigma desiccation-tolerant (cdt) mutants with different molecular and physiological characteristics, suggesting that different pathways of desiccation tolerance are affected. One of the mutants, cdt-2, constitutively expresses known osmoprotective Lea genes in callus and leaf tissue. Further analysis of this mutant revealed that the tagged locus is similar to a previously characterised gene, CDT-1, which codes for a signalling molecule that confers desiccation tolerance. The nature of the T-DNA insertion provides insight into the mechanism by which the CDT-1/2 gene family functions in ABA signal transduction.


Subject(s)
Abscisic Acid/pharmacology , Craterostigma/genetics , Gene Expression Regulation, Plant , Mutation , Abscisic Acid/chemistry , Base Sequence , DNA, Bacterial/chemistry , Desiccation , Genes, Plant , Genetic Vectors , Genotype , Models, Genetic , Molecular Sequence Data , Phenotype , Plant Leaves/metabolism , Polymerase Chain Reaction , Promoter Regions, Genetic , RNA/chemistry , RNA, Plant/chemistry , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Signal Transduction
6.
Theor Appl Genet ; 110(6): 1052-60, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15714326

ABSTRACT

The domestication of tetraploid wheats started from their wild progenitor Triticum dicoccoides. In this paper, the geographical distribution of this progenitor is revised to include more sampling locations. The paper is based on a collection of wild and domesticated lines (226 accessions in total) analyzed by AFLP at 169 polymorphic loci. The collection includes the 69 wild lines considered by Mori et al. (2003) in their study on chloroplast DNA haplotypes of T. dicoccoides. The goal of the experiment was to reconsider which location thought to have generated the domesticated germplasm has the highest chance of being the actual site from which wild progenitors were sampled during domestication. Phylogenetic analysis of the nuclear AFLP databases indicates that two different genetic taxa of T. dicoccoides exist, the western one, colonizing Israel, Syria, Lebanon and Jordan, and the central-eastern one, which has been frequently sampled in Turkey and rarely in Iran and Iraq. It is the central-eastern race that played the role of the progenitor of the domesticated germplasm. This is supported by the cumulative results of the AFLP data from the collections of Ozkan et al. (2002) and of Mori et al. (2003), which indicate that the Turkish Karacadag population, intermixed with some Iraq-Iran lines, has a tree topology consistent with that of the progenitor of domesticated genotypes. The Turkish Kartal population belongs genetically to the central-eastern T. dicoccoides race but at the nuclear DNA level is less related to the domesticated gene pool. A general agreement between published work on tetraploid wheat domestication emerges from these results. A disagreement is nevertheless evident at the local geographical scale; the chloroplast DNA data indicate the Kartal mountains while AFLP fingerprinting points to the Karacadag Range as the putative site of tetraploid wheat domestication.


Subject(s)
Demography , Phylogeny , Polyploidy , Triticum/genetics , Cluster Analysis , Gene Frequency , Geography , Middle East , Nucleic Acid Amplification Techniques , Polymorphism, Restriction Fragment Length , Species Specificity
7.
Genome ; 47(3): 615-20; discussion 621-2, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15190379

ABSTRACT

We review some concepts and methods of handling and using DNA fingerprinting in phylogenetic analyses related to crop domestication. Particular reference is made to AFLP markers and mode and place of einkorn, barley, and tetraploid wheat domestication in the Neolithic by human communities in the Fertile Crescent. The reconsideration of AFLP databases of domesticated and wild lines demonstrates that phylogenetic tree topologies, originally described for the three species, match closely the new results obtained by principle coordinate analyse.


Subject(s)
Crops, Agricultural/genetics , Polymorphism, Genetic , Phylogeny
8.
Mol Genet Genomics ; 269(4): 535-41, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12783303

ABSTRACT

For functional studies, nine cDNAs encoding Kunitz-type enzyme inhibitors from potato tubers were expressed as GST (glutathione S transferase)-tagged fusion proteins in the fission yeast Schizosaccharomyces pombe. The inhibitors represented the three major homology groups A, B and C found in tubers. Members of the same homology group were at least 90% identical in sequence. The purified GST fusion proteins were tested for their ability to inhibit the proteases trypsin, alpha-chymotrypsin, subtilisin, papain and aspergillopepsin I, and for inhibition of the growth of fungi. Fusion proteins belonging to the same and different homology groups were found to exhibit distinct protease inhibition profiles. Removal of the GST tag by cleavage with enterokinase did not change the inhibition profile but increased the inhibitory activity. Group A and B inhibitors affected the proteases to different extents, whereas group C inhibitors showed only weak or no protease inhibition. One fusion protein completely inhibited aspergillopepsin I. One fusion protein each of groups A and B strongly inhibited mycelial growth of the fungus Fusarium moniliforme. The results suggest functional polymorphism among closely related members of the Kunitz-type inhibitor family.


Subject(s)
Endopeptidases/metabolism , Enzyme Inhibitors/metabolism , Solanum tuberosum/genetics , Fungi/pathogenicity , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Solanum tuberosum/enzymology , Solanum tuberosum/microbiology
9.
Mol Genet Genomics ; 269(4): 526-34, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12783302

ABSTRACT

In the potato, Kunitz-type enzyme inhibitors are abundant and highly polymorphic small proteins found in tubers. DNA sequence analysis of 1596 unselected ESTs (expressed sequence tags) from mature tubers of the cultivars Provita and Saturna resulted in the identification of 55 different DNA sequences with high sequence similarity to Kunitz-type enzyme inhibitors. The frequency of Kunitz-type inhibitor ESTs in Provita was four times higher than in Saturna tubers, and none of the Provita ESTs was identical to any of the Saturna ESTs. A phenogram constructed from the deduced amino acid sequences of the inhibitors revealed three major homology groups-A, B and C. Group A inhibitors were all derived from Provita ESTs. Inhibitor groups A and B were more similar to each other than to group C inhibitors, and for most members within-group similarity was at least 90%. Non-conservative amino acid substitutions and insertion/deletion polymorphisms suggest functional differentiation between members of the gene family. A minimum of 21 genes for Kunitz-type enzyme inhibitors (six for group A, nine for group B and six for group C) was estimated to exist in the potato genome. Genetic mapping and the identification of BAC (bacterial artificial chromosome) clones containing more than one member of the gene family indicated that most inhibitor genes of groups A, B and C are organized in a cluster that maps to a single region on potato chromosome III.


Subject(s)
Enzyme Inhibitors/metabolism , Enzymes/metabolism , Multigene Family , Solanum tuberosum/genetics , Amino Acid Sequence , Expressed Sequence Tags , Molecular Sequence Data , Phylogeny , Solanum tuberosum/enzymology
10.
Heredity (Edinb) ; 90(5): 390-6, 2003 May.
Article in English | MEDLINE | ID: mdl-12714985

ABSTRACT

The first step in positional gene cloning is the integration into available molecular maps of genetic loci for which mutant alleles exist. We report the placement of 29 barley developmental mutants on a restriction fragment length polymorphism-amplified fragment length polymorphism (RFLP-AFLP) map. The mapping procedure used homozygous mutant F(2) plants in an iterative process: once a mutant linked AFLP was found, primer combinations were successively selected to generate AFLP fragments more tightly linked to the mutant locus. The mutants considered were adp, als, aur-a1, aur-a2, br1, br2, bra-d7, cul3, cul5, cul15, cul16, den6, den8, dub1, hex-v3, hex-v4, int-c5, K, li, lig-a2, lk2, lk5, sld1, sld4, tr, trd, unc, uc2 and uz. The 29 mutant loci were linked to the closest molecular markers by distances ranging from 0 to 23 cM, with an average value of 3.8 cM away. Since the efficiency of the mapping procedure is a function of the density of molecular markers, the RFLP-AFLP map of Castiglioni et al was further integrated with new AFLPs using 87 doubled haploid lines derived from the barley cross Igri x Danilo. A total of 819 mapped AFLP marker loci are now available in the combined map.


Subject(s)
Chromosome Mapping , Hordeum/genetics , Mutation , Genetic Linkage , Hordeum/anatomy & histology
12.
Mol Genet Genomics ; 267(5): 613-21, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12172800

ABSTRACT

Oxidation of methionine residues during periods of oxidative stress can lead to loss of protein function. Organisms have developed defense strategies to minimize such damage. The PilB protein, which is involved in pilus formation in the pathogen Neisseria gonorrhoeae, is composed of three functional protein domains (I-III) with putative roles in oxidative stress defense. These domains are evolutionarily conserved and homologs have been discovered in diverse prokaryotes and eukaryotes. Domain III shows similarities to selenoproteins which contain selenium instead of sulfur in a conserved cysteine residue. The substitution of selenium for sulfur alters the redox properties of such proteins. Knock-out mutants were used to elucidate the function of these novel selenoprotein-like domains in yeast and in Arabidopsis thaliana. We show that organisms with non-functional genes for selenoprotein-like polypeptides accumulate higher levels of oxidized methionine residues on exposure to oxidative stress. The behavior of the mutants suggests that these novel selenoprotein-like gene products are part of a ubiquitous detoxification system that interacts with other redox-related proteins such as the thioredoxin-related protein and methionine sulfoxide reductase which are encoded by domains I and II of PilB. These proteins may be encoded by one gene as in the case of several prokaryotes, or by separate genes as in the eukaryotes examined here.


Subject(s)
Arabidopsis/genetics , Oxidative Stress/genetics , Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Arabidopsis/physiology , Genes, Fungal , Genes, Plant , Hydrogen Peroxide/metabolism , Molecular Sequence Data , Multigene Family , Mutation , Proteins/physiology , Saccharomyces cerevisiae/physiology , Selenoproteins , Sequence Alignment
13.
Theor Appl Genet ; 104(6-7): 1107-1113, 2002 May.
Article in English | MEDLINE | ID: mdl-12582619

ABSTRACT

Seventy five expressed sequence tags (ESTs) that are associated with functions in carbohydrate and nitrogen metabolism were genotyped in 108 plants of an F2 population of sugar beet ( Beta vulgaris L.) segregating for sugar quality and yield parameters. Supplemented by known RFLP and AFLP markers, the resulting map spans 446 cM of the 758-Mbp genome of sugar beet. F3 test-cross plants were analysed for corrected sugar yield, beet yield, ion balance and the content of sugar, amino nitrogen, potassium and sodium in six locations. Twenty one significant quantitative trait loci (QTLs) were detected using the composite interval mapping approach. Expressed genes flanking the QTLs were identified in all cases. Correlations between QTLs and potential candidate genes are discussed.

14.
Genet Res ; 80(2): 131-43, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12534216

ABSTRACT

Two molecular maps of Triticum monococcum L were produced and integrated. The integrated map includes a total of 477 markers, 32 RFLPs, 438 AFLPs, one morphological (soft glume (Sog)) and six storage-protein markers, and covers 856 cM. The trait Sog with the recessive allele sog maps to linkage group 2S. Probably, this is the T. monococcum homologue of Tg and Tg2 in hexaploid and tetraploid wheats, respectively. Loci coding for seed storage proteins were allocated to chromosomes 1L (HMW GLU1,2 and Glu1), 1S (LMW GLU6,7, LMW GLU1-4, omega GLI1-4, gamma GLI5 and Gli-1) and 6L (alpha/beta GLI7-14). Parameters related to bread-making quality (SDS sedimentation volume, specific sedimentation volume (SSV) and total protein content) were studied in one of the two populations. A QTL that is consistently present across environments was detected for SDS sedimentation volume and for SSV. The position of the QTL on chromosome 1S was in close agreement with the map positions of storage-protein loci. A second QTL was mapped on chromosome 5. For protein content, two significant QTLs were mapped to linkage groups 1 and 5.


Subject(s)
Bread , Genes, Plant , Genetic Linkage , Quantitative Trait, Heritable , Triticum/genetics , Chromosome Mapping , Chromosomes, Plant , DNA, Plant/genetics , Genetic Markers , Genotype , Phenotype , Plant Proteins/chemistry , Plant Proteins/metabolism , Polyploidy , Protein Subunits , Triticum/metabolism
16.
Nucleic Acids Res ; 29(21): 4373-7, 2001 Nov 01.
Article in English | MEDLINE | ID: mdl-11691924

ABSTRACT

The availability of sequenced genomes has generated a need for experimental approaches that allow the simultaneous analysis of large, or even complete, sets of genes. To facilitate such analyses, we have developed GST-PRIME, a software package for retrieving and assembling gene sequences, even from complex genomes, using the NCBI public database, and then designing sets of primer pairs for use in gene amplification. Primers were designed by the program for the direct amplification of gene sequence tags (GSTs) from either genomic DNA or cDNA. Test runs of GST-PRIME on 2000 randomly selected Arabidopsis and Drosophila genes demonstrate that 93 and 88% of resulting GSTs, respectively, fulfilled imposed length criteria. GST-PRIME primer pairs were tested on a set of 1900 Arabidopsis genes coding for chloroplast-targeted proteins: 95% of the primer pairs used in PCRs with genomic DNA generated the correct amplicons. GST-PRIME can thus be reliably used for large-scale or specific amplification of intron-containing genes of multicellular eukaryotes.


Subject(s)
Arabidopsis Proteins/genetics , DNA Primers/genetics , Drosophila Proteins/genetics , Genome , Polymerase Chain Reaction/methods , Software , Automation/methods , Base Pairing , Chloroplasts/metabolism , DNA Primers/chemistry , Databases, Genetic , Expressed Sequence Tags , Genes, Insect/genetics , Genes, Plant/genetics , Introns/genetics , Nucleic Acid Conformation , Protein Transport , RNA Editing/genetics , RNA Splice Sites/genetics
17.
Plant J ; 27(3): 179-89, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11532164

ABSTRACT

The prpl11-1 mutant of Arabidopsis thaliana was identified among a collection of T-DNA tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutation responsible was localized to Prpl11, a single-copy nuclear gene that encodes PRPL11, a component of the large subunit of the plastid ribosome. The amino acid sequence of Arabidopsis PRPL11 is very similar to those of L11 proteins from spinach and prokaryotes. In the prpl11-1 mutant, photosensitivity and chlorophyll fluorescence parameters are significantly altered owing to changes in the levels of thylakoid protein complexes and stromal proteins. The abundance of most plastome transcripts examined, such as those of genes coding for the photosystem II core complex and RbcL, is not decreased. Plastid ribosomal RNA accumulates in wild-type amounts, and the assembly of plastid polysomes on the transcripts of the rbcL, psbA and psbE genes remains mainly unchanged in mutant plants, indicating that lack of PRPL11 affects neither the abundance of plastid ribosomes nor their assembly into polysomes. However, in vivo translation assays demonstrate that the rate of translation of the large subunit of Rubisco (RbcL) is significantly reduced in prpl11-1 plastids. Our data suggest a major role for PRPL11 in plastid ribosome activity per se, consistent with its location near the GTPase-binding centre of the chloroplast 50S ribosomal subunit. Additional effects of the mutation, including the pale green colour of the leaves and a drastic reduction in growth rate under greenhouse conditions, are compatible with reduced levels of protein synthesis in plastids.


Subject(s)
Arabidopsis/genetics , Photosynthesis , Plastids , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomal Proteins/genetics , Amino Acid Sequence , Base Sequence , DNA, Bacterial , Molecular Sequence Data , Mutation , Phenotype , Ribosomal Proteins/chemistry , Sequence Homology, Amino Acid
18.
Plant J ; 27(1): 13-23, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11489179

ABSTRACT

This paper describes two-hybrid interactions amongst barley homeodomain proteins encoded by the Three Amino acid Loop Extension (TALE) superfamily. The class I KNOX protein BKN3 is shown to homodimerise and to associate with proteins encoded by the class I and II Knox genes BKn-1 and BKn-7. Furthermore, JUBEL1 and JUBEL2, two BELL1 homologous proteins, are identified and characterised as interacting partners of BKN3. Differences in the requirements of BKN3 derivatives for interactions with KNOX and JUBEL proteins imply the involvement of overlapping but slightly different domains. This set of results is an example for interactions amongst different classes of plant TALE homeodomain proteins, as previously described for related animal proteins. Apparently identical spatial and temporal expression patterns of BKn-1, BKn-3, BKn-7, JuBel1 and JuBel2, as determined by in situ hybridisation, are compatible with possible interactions of their protein products in planta. Contradictory to the common model, that the transcriptional down-regulation of certain class 1 Knox-genes is the prerequisite for organ differentiation, transcripts of all five genes were, similar to Tkn1 and Tkn2/LeT6 of tomato, detected in incipient and immature leaves as well as in meristematic tissues. A characteristic phenotype is induced by the overexpression of JuBel2 in transgenic tobacco plants.


Subject(s)
Genes, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hordeum/metabolism , Plant Proteins , Amino Acid Sequence , Base Sequence , DNA, Complementary , Gene Expression Regulation, Plant , Homeodomain Proteins/chemistry , Hordeum/genetics , Molecular Sequence Data , Plants, Genetically Modified/genetics , Plants, Toxic , Protein Binding , Nicotiana/genetics , Two-Hybrid System Techniques
19.
Plant J ; 23(1): 29-42, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10929099

ABSTRACT

The maize cob presents an excellent opportunity to screen visually for mutations affecting assimilate partitioning in the developing kernel. We have identified a defective kernel mutant termed rgf1, reduced grain filling, with a final grain weight 30% of the wild type. In contrast with most defective endosperm mutants, rgf1 shows gene dosage-dependent expression in the endosperm. rgf1 kernels possess a small endosperm incompletely filling the papery pericarp, but embryo development is unaffected and the seeds are viable. The mutation conditions defective pedicel development and greatly reduces expression of endosperm transfer layer-specific markers. rgf1 exhibits striking morphological similarities to the mn1 mutant, but maps to a locus approximately 4 cM away from mn1 on chromosome 2 of maize. Despite reduced starch accumulation in the mutant, no obvious lesion in starch biosynthesis has been detected. Free sugar levels are unaltered in rgf1 endosperm. Rates of sugar uptake, measured over short (8 h) periods in cultured kernels, are increased in rgf1 compared to the wild type. rgf1 and wild-type kernels, excised at 5 DAP and cultured in vitro also develop differently in response to variations in sugar regime: glucose concentrations above 1% arrest placentochalazal development of rgf1 kernels, but have no effect on cultured wild-type kernels. These findings suggest that either uptake or perception of sugar(s) in endosperm cells at 5-10 DAP determines the rgf1 kernel phenotype.


Subject(s)
Genes, Plant , Mutation , Zea mays/genetics , Base Sequence , Carbohydrate Metabolism , DNA Primers , Gene Expression , Starch/biosynthesis , Zea mays/growth & development , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...