Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(25): 10720-10729, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38869457

ABSTRACT

We investigated the possibility of synthesizing Co nanoparticles in CoZrnH/AlOx(OH)y/Al ceramic-metal catalysts and controlling the catalytic properties of these nanoparticles in syngas conversion by changing the Co/Zr ratio. The CoZr nanocomposites were obtained from metal powders by mechanochemical activation in a high-energy mill under an argon atmosphere, followed by treatment with hydrogen at high pressure and room temperature. Ceramic-metal catalysts were prepared by mixing the corresponding CoZrnH powder nanocomposite (30 wt%) with powdered aluminum (70 wt%), hydrothermal treatment of the mixture and subsequent calcination. The materials were characterized with a set of physicochemical methods: powder X-ray diffraction, scanning electron microscopy, 59Co internal field nuclear magnetic resonance spectroscopy, and temperature programmed reduction. Catalytic studies were performed in a laboratory fixed-bed flow reactor at 2 MPA and 210-270 °C. It is shown that the activity in syngas conversion to C5+ hydrocarbons and selectivity to methane and C2-C4 hydrocarbons depend on the Co/Zr ratio. Thus, with an increase in the zirconium content in the samples, the interaction of metal cobalt with metal zirconium improves in the process of mechanical activation and subsequent treatment with hydrogen. The destruction of the agglomerates of crystallites of metallic cobalt in the form of ß-Co (Cofcc) occurs as well as their transformation to α-Co (Cohcp) particles active in the syngas conversion to C5+ hydrocarbons. This can explain the highest specific yield of C5+ hydrocarbons on a cermet with the lowest Co/Zr ratio.

2.
J Biotechnol ; 389: 13-21, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38688410

ABSTRACT

Biocatalytic engineering was carried out by varying monotonically the binary CNTs-silica composition and, accordingly, the physicochemical characteristics of adsorbents developed for immobilization of recombinant T. lanuginosus lipase (rPichia/lip). The adsorbents based on composite carbon-silica materials (CCSMs) were produced by impregnating finely dispersed multi-walled carbon nanotubes with silica hydrosol followed by calcination in argon at 350°C; the mass ratio of the hydrophobic and the hydrophilic components varied over a wide range. Biocatalysts (BCs) for green low-temperature synthesis of various esters in a non-aqueous medium of organic solvents were prepared by adsorption of rPichia/lip with subsequent drying under ambient conditions. The characteristics of the CCSMs and BCs were characterized by thermogravimetry, nitrogen porosimetry and electron microscopy. The catalytic properties of BCs, such as enzymatic activity, substrate conversion and specificity, as well we their operational stability depending on the chemical composition of CCSMs were extensively studied in the esterification of saturated monocarboxylic acids (C4, C7, C18) and primary aliphatic alcohols (C2, C4, C16) in hexane at 20°C. It was found that the esterifying activity manyfold decreased with increasing the silica content primarily due to a decrease in adsorption ability of CCSMs toward rPichia/lip. The substrate specificity and operational stability of the lipase-active BCs did not greatly depend on the composition of CCSMs. Biocatalysts retained more than half of their initial esterifying activity after 10 reaction cycles.


Subject(s)
Enzymes, Immobilized , Lipase , Silicon Dioxide , Lipase/chemistry , Lipase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Silicon Dioxide/chemistry , Adsorption , Biocatalysis , Esterification , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Eurotiales/enzymology , Enzyme Stability
3.
Materials (Basel) ; 16(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36770080

ABSTRACT

The use of metal powders produced by mechanical treatment in various fields, such as catalysis or gas absorption, is often limited by the low specific surface area of the resulting particles. One of the possible solutions for increasing the particle fineness is hydrogen treatment; however, its effect on the structure of mechanically treated powders remains unexplored. In this work, for the first time, a metal-oxide nanocomposite powder was produced by mechanical alloying (MA) in a high-energy planetary ball mill from commercial powders of Zr and Co in the atomic ratio Co:Zr = 53:47 in an inert atmosphere, followed by high-pressure hydrogenation at room temperature. The initial powders and products of alloying and hydrogenation were studied by XRD, 59Co Internal Field NMR, SEM, and HRTEM microscopy with EDX mapping, as well as Raman spectroscopy. MA resulted in significant amorphization of the powders, as well as extensive oxidation of zirconium by water according to the so-called "Fukushima effect". Moreover, an increase in hcp Co sites was observed. 59Co IF NMR spectra revealed the formation of magnetically single-domain cobalt particles after hydrogenation. The crystallite sizes remained unchanged, which was not observed earlier. The pulverization of Co and an increase in hcp Co sites made this nanocomposite suitable for the synthesis of promising Fischer-Tropsch catalysts.

4.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329537

ABSTRACT

In the present work, complex powder alloys containing spinel as a minor phase were produced by mechanical alloying in a high-energy planetary ball mill from a 33Al-45Cu-22Fe (at.%) powder blend. These alloys show characteristics suitable for the synthesis of promising catalysts. The alloying was conducted in two stages: at the first stage, a Cu+Fe powder mixture was ball-milled for 90 min; at the second stage, Al was added, and the milling process was continued for another 24 min. The main products of mechanical alloying formed at each stage were studied using X-ray diffraction phase analysis, Mössbauer spectroscopy, transmission electron microscopy, and energy-dispersive spectroscopy. At the end of the first stage, crystalline iron was not found. The main product of the first stage was a metastable Cu(Fe) solid solution with a face-centered cubic structure. At the second stage, the Cu(Fe) solid solution transformed to Cu(Al), several Fe-containing amorphous phases, and a spinel phase. The products of the two-stage process were different from those of the single-stage mechanical alloying of the ternary elemental powder mixture; the formation of undesirable intermediate phases was avoided, which ensured excellent composition uniformity. A sequence of solid-state reactions occurring during mechanical alloying was proposed. Mesopores and a spinel phase were the features of the two-stage milled material (both are desirable for the target catalyst).

SELECTION OF CITATIONS
SEARCH DETAIL
...