Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Mol Ther ; 32(4): 1061-1079, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38382529

ABSTRACT

Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors' exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1-5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.


Subject(s)
Complement Factor H , Kidney Diseases , Humans , Mice , Rats , Animals , Complement Factor H/genetics , Complement C3d/metabolism , Kidney Diseases/etiology , Antibodies , Complement Activation
2.
Kidney Int ; 105(3): 473-483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142037

ABSTRACT

Complement activation has long been recognized as a central feature of membranous nephropathy (MN). Evidence for its role has been derived from the detection of complement products in biopsy tissue and urine from patients with MN and from mechanistic studies primarily based on the passive Heymann nephritis model. Only recently, more detailed insights into the exact mechanisms of complement activation and effector pathways have been gained from patient data, animal models, and in vitro models based on specific target antigens relevant to the human disease. These data are of clinical relevance, as they parallel the recent development of numerous specific complement therapeutics for clinical use. Despite efficient B-cell depletion, many patients with MN achieve only partial remission of proteinuria, which may be explained by the persistence of subepithelial immune complexes and ongoing complement-mediated podocyte injury. Targeting complement, therefore, represents an attractive adjunct treatment for MN, but it will need to be tailored to the specific complement pathways relevant to MN. This review summarizes the different lines of evidence for a central role of complement in MN and for the relevance of distinct complement activation and effector pathways, with a focus on recent developments.


Subject(s)
Glomerulonephritis, Membranous , Podocytes , Animals , Humans , Complement Activation , Podocytes/pathology , Complement System Proteins , Antigen-Antibody Complex
3.
J Am Soc Nephrol ; 34(5): 737-750, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36800545

ABSTRACT

Podocytes and parietal epithelial cells (PECs) are among the few principal cell types within the kidney glomerulus, the former serving as a crucial constituent of the kidney filtration barrier and the latter representing a supporting epithelial layer that adorns the inner wall of Bowman's capsule. Podocytes and PECs share a circumscript developmental lineage that only begins to diverge during the S-shaped body stage of nephron formation-occurring immediately before the emergence of the fully mature nephron. These two cell types, therefore, share a highly conserved gene expression program, evidenced by recently discovered intermediate cell types occupying a distinct spatiotemporal gene expression zone between podocytes and PECs. In addition to their homeostatic functions, podocytes and PECs also have roles in kidney pathogenesis. Rapid podocyte loss in diseases, such as rapidly progressive GN and collapsing and cellular subtypes of FSGS, is closely allied with PEC proliferation and migration toward the capillary tuft, resulting in the formation of crescents and pseudocrescents. PECs are thought to contribute to disease progression and severity, and the interdependence between these two cell types during development and in various manifestations of kidney pathology is the primary focus of this review.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Humans , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Glomerulus/pathology , Bowman Capsule/metabolism , Bowman Capsule/pathology , Epithelial Cells/metabolism
4.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36445780

ABSTRACT

FOXD1+ cell-derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific conditional knockout of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2-cKO mouse kidneys. Zeb2-deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers, including PDGFRß, CSPG4, desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development, whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.


Subject(s)
Kidney Diseases , Myofibroblasts , Animals , Mice , Cell Differentiation , Fibrosis , Kidney/pathology , Kidney Diseases/metabolism , Myofibroblasts/metabolism
5.
Sci Adv ; 7(36): eabg6600, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516901

ABSTRACT

Podocyte loss triggering aberrant activation and proliferation of parietal epithelial cells (PECs) is a central pathogenic event in proliferative glomerulopathies. Podocyte-specific Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, is essential for maintaining podocyte homeostasis and PEC quiescence. Using mice with podocyte-specific knockdown of Klf4, we conducted glomerular RNA-sequencing, tandem mass spectrometry, and single-nucleus RNA-sequencing to identify cell-specific transcriptional changes that trigger PEC activation due to podocyte loss. Integration with in silico chromatin immunoprecipitation identified key ligand-receptor interactions, such as fibronectin 1 (FN1)­αVß6, between podocytes and PECs dependent on KLF4 and downstream signal transducer and activator of transcription 3 (STAT3) signaling. Knockdown of Itgb6 in PECs attenuated PEC activation. Additionally, podocyte-specific induction of human KLF4 or pharmacological inhibition of downstream STAT3 activation reduced FN1 and integrin ß 6 (ITGB6) expression and mitigated podocyte loss and PEC activation in mice. Targeting podocyte-PEC crosstalk might be a critical therapeutic strategy in proliferative glomerulopathies.

6.
Kidney Int Rep ; 6(6): 1629-1633, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34169203

ABSTRACT

INTRODUCTION: Focal segmental glomerulosclerosis (FSGS) is characterized by proteinuria and a histologic pattern of glomerular lesions of diverse etiology that share features including glomerular scarring and podocyte foot process effacement. Roundabout guidance receptor 2 (ROBO2)/slit guidance ligand 2 (SLIT2) signaling destabilizes the slit diaphragm and reduces podocyte adhesion to the glomerular basement membrane (GBM). Preclinical studies suggest that inhibition of glomerular ROBO2/SLIT2 signaling can stabilize podocyte adhesion and reduce proteinuria. This clinical trial evaluates the preliminary efficacy and safety of ROBO2/SLIT2 inhibition with the ROBO2 fusion protein PF-06730512 in patients with FSGS. METHODS: The Study to Evaluate PF-06730512 in Adults With FSGS (PODO; ClinicalTrials.gov identifier NCT03448692), an open-label, phase 2a, multicenter trial in adults with FSGS, will enroll patients into 2 cohorts (n = 22 per cohort) to receive either high- or low-dose PF-06730512 (intravenous) every 2 weeks for 12 weeks. Key inclusion criteria include a confirmed biopsy diagnosis of FSGS, an estimated glomerular filtration rate (eGFR) ≥45 ml/min/1.73 m2 based on the Chronic Kidney Disease Epidemiology Collaboration formula (30-45 with a recent biopsy), and urinary protein-to-creatinine ratio (UPCR) >1.5 g/g. Key exclusion criteria include collapsing FSGS, serious/active infection, ≥50% tubulointerstitial fibrosis on biopsy, and organ transplantation. The primary endpoint is change from baseline to week 13 in UPCR; secondary endpoints include safety, changes in eGFR, and PF-06730512 serum concentration. RESULTS: This ongoing trial will report the efficacy, safety, pharmacokinetics, and biomarker results of PF-06730512 for patients with FSGS. CONCLUSION: Findings from this proof-of-concept study may support further development and evaluation of PF-06730512 to treat FSGS and warrant assessment in phase 3 clinical trials.

7.
J Clin Invest ; 131(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33351779

ABSTRACT

Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1-positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1 IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1 titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 were required to induce proteolysis of synaptopodin and NEPH1 by 2 distinct proteolytic pathways mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrated a mechanism by which aberrantly glycosylated IgG4 activated the lectin pathway and induced podocyte injury in primary membranous nephropathy.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Complement Pathway, Mannose-Binding Lectin/immunology , Glomerulonephritis, Membranous/immunology , Immunoglobulin G/immunology , Nephrotic Syndrome/immunology , Podocytes/immunology , Receptors, Phospholipase A2/immunology , Adult , Autoimmune Diseases/pathology , Carrier Proteins/immunology , Cell Line, Transformed , Complement Membrane Attack Complex/immunology , Glomerulonephritis, Membranous/pathology , Humans , Membrane Proteins/immunology , Microfilament Proteins/immunology , Nephrotic Syndrome/pathology , Podocytes/pathology , Receptor, Anaphylatoxin C5a/immunology , Receptors, Complement/immunology
8.
Clin J Am Soc Nephrol ; 16(2): 319-327, 2021 02 08.
Article in English | MEDLINE | ID: mdl-32792352

ABSTRACT

New treatments, new understanding, and new approaches to translational research are transforming the outlook for patients with kidney diseases. A number of new initiatives dedicated to advancing the field of nephrology-from value-based care to prize competitions-will further improve outcomes of patients with kidney disease. Because of individual nephrologists and kidney organizations in the United States, such as the American Society of Nephrology, the National Kidney Foundation, and the Renal Physicians Association, and international nephrologists and organizations, such as the International Society of Nephrology and the European Renal Association-European Dialysis and Transplant Association, we are beginning to gain traction to invigorate nephrology to meet the pandemic of global kidney diseases. Recognizing the timeliness of this opportunity, the American Society of Nephrology convened a Division Chief Retreat in Dallas, Texas, in June 2019 to address five key issues: (1) asserting the value of nephrology to the health system; (2) productivity and compensation; (3) financial support of faculty's and divisions' educational efforts; (4) faculty recruitment, retention, diversity, and inclusion; and (5) ensuring that fellowship programs prepare trainees to provide high-value nephrology care and enhance attraction of trainees to nephrology. Herein, we highlight the outcomes of these discussions and recommendations to the American Society of Nephrology.


Subject(s)
Advisory Committees , Fellowships and Scholarships/standards , Nephrologists/economics , Nephrology/education , Nephrology/organization & administration , Societies, Medical/organization & administration , Efficiency , Faculty, Medical , Fellowships and Scholarships/economics , Humans , Personnel Selection , Salaries and Fringe Benefits
9.
J Immunol ; 204(10): 2627-2640, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32238460

ABSTRACT

Lupus nephritis (LN) is a major contributor to morbidity and mortality in lupus patients, but the mechanisms of kidney damage remain unclear. In this study, we introduce, to our knowledge, novel models of LN designed to resemble the polygenic nature of human lupus by embodying three key genetic alterations: the Sle1 interval leading to anti-chromatin autoantibodies; Mfge8-/- , leading to defective clearance of apoptotic cells; and either C1q-/- or C3-/- , leading to low complement levels. We report that proliferative glomerulonephritis arose only in the presence of all three abnormalities (i.e., in Sle1.Mfge8 -/- C1q -/- and Sle1.Mfge8 -/- C3 -/- triple-mutant [TM] strains [C1q -/-TM and C3-/- TM, respectively]), with structural kidney changes resembling those in LN patients. Unexpectedly, both TM strains had significant increases in autoantibody titers, Ag spread, and IgG deposition in the kidneys. Despite the early complement component deficiencies, we observed assembly of the pathogenic terminal complement membrane attack complex in both TM strains. In C1q-/- TM mice, colocalization of MASP-2 and C3 in both the glomeruli and tubules indicated that the lectin pathway likely contributed to complement activation and tissue injury in this strain. Interestingly, enhanced thrombin activation in C3-/- TM mice and reduction of kidney injury following attenuation of thrombin generation by argatroban in a serum-transfer nephrotoxic model identified thrombin as a surrogate pathway for complement activation in C3-deficient mice. These novel mouse models of human lupus inform the requirements for nephritis and provide targets for intervention.


Subject(s)
Hereditary Complement Deficiency Diseases/genetics , Kidney/pathology , Lupus Nephritis/immunology , Animals , Antibodies, Antinuclear/blood , Antigens, Surface/genetics , Complement Activation , Complement C1q/genetics , Complement C3/genetics , Disease Models, Animal , Glomerulonephritis , Hereditary Complement Deficiency Diseases/immunology , Humans , Lupus Nephritis/genetics , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Milk Proteins/genetics , Multifactorial Inheritance
10.
Am J Pathol ; 190(4): 799-816, 2020 04.
Article in English | MEDLINE | ID: mdl-32220420

ABSTRACT

Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.


Subject(s)
Kidney Diseases/prevention & control , Kidney Glomerulus/cytology , Podocytes/cytology , Protective Agents/metabolism , Receptors, Immunologic/deficiency , Adult , Animals , Female , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred C57BL , Podocytes/metabolism , Proteinuria/metabolism , Proteinuria/pathology , Proteinuria/prevention & control , Rats
13.
Sci Rep ; 9(1): 7168, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31073168

ABSTRACT

The universal pathologic features implicated in the progression of chronic kidney disease (CKD) are interstitial fibrosis and tubular atrophy (IFTA). Current methods of estimating IFTA are slow, labor-intensive and fraught with variability and sampling error, and are not quantitative. As such, there is pressing clinical need for a less-invasive and faster method that can quantitatively assess the degree of IFTA. We propose a minimally-invasive optical method to assess the macro-architecture of kidney tissue, as an objective, quantitative assessment of IFTA, as an indicator of the degree of kidney disease. The method of elastic-scattering spectroscopy (ESS) measures backscattered light over the spectral range 320-900 nm and is highly sensitive to micromorphological changes in tissues. Using two discrete mouse models of CKD, we observed spectral trends of increased scattering intensity in the near-UV to short-visible region (350-450 nm), relative to longer wavelengths, for fibrotic kidneys compared to normal kidney, with a quasi-linear correlation between the ESS changes and the histopathology-determined degree of IFTA. These results suggest the potential of ESS as an objective, quantitative and faster assessment of IFTA for the management of CKD patients and in the allocation of organs for kidney transplantation.


Subject(s)
Kidney/pathology , Renal Insufficiency, Chronic/pathology , Spectrophotometry/methods , Adenine/administration & dosage , Animals , Atrophy , Blood Urea Nitrogen , Diet/veterinary , Disease Models, Animal , Female , Fibrosis , Kidney/chemistry , Male , Mice , Mice, Inbred C57BL , Renal Insufficiency, Chronic/metabolism
14.
Curr Opin Nephrol Hypertens ; 28(1): 70-76, 2019 01.
Article in English | MEDLINE | ID: mdl-30451735

ABSTRACT

PURPOSE OF REVIEW: Despite major advances in since the discovery of the phospholipase A2 receptor (PLA2R) as the major autoantigen on podocytes in primary membranous nephropathy, there are still several unanswered questions as highlighted here. RECENT FINDINGS: A substantial body of literature, included in more than 680 articles since 2009, has documented genetic susceptibility to primary membranous nephropathy involving PLA2R1 and class II MHC alleles, the clinical value of anti-PLA2R assays, the significance of epitope spreading of the anti-PLA2R response, discovery of thrombospondin type I domain-containing 7A (THSD7A) as a minor antigen in primary membranous nephropathy, and the ability to transfer disease into mice by infusion of anti-THSD7A sera. However, the normal physiology and pathophysiology of PLA2R and THSD7A in podocytes is still unknown and the genetic influence on disease susceptibility is unexplained. We still do not know what causes loss of self-tolerance to PLA2R and THSD7A or how the autoantibodies, which are predominantly of the IgG4 subclass, cause podocyte injury and proteinuria. Complement deposits are prominent in membranous nephropathy but we are still uncertain how the complement system is activated and whether or not it plays a role in podocyte damage. Notwithstanding the advances over the past decade, our treatments have not changed substantially. SUMMARY: This review identifies opportunities to extend the advances that have been made to better understand the immunopathogenesis and genetic basis of primary membranous nephropathy and apply the knowledge to design more specific therapies.


Subject(s)
Glomerulonephritis, Membranous/etiology , Autoantibodies/immunology , Complement System Proteins , Genes, MHC Class II , Glomerulonephritis, Membranous/immunology , Humans , Podocytes/immunology , Proteinuria/etiology , Receptors, Phospholipase A2/immunology , Thrombospondins/immunology
15.
Kidney Int ; 95(2): 310-320, 2019 02.
Article in English | MEDLINE | ID: mdl-30522766

ABSTRACT

Crescentic glomerulonephritis is an inflammatory condition characterized by rapid deterioration of kidney function. Previous studies of crescentic glomerulonephritis have focused on immune activation in the kidney. However, the role of fibroblastic reticular cells, which reside in the stromal compartment of the kidney lymph node, has not been studied in this condition. We investigated the activation of kidney lymph node-resident fibroblastic reticular cells in nephrotoxic serum nephritis, a classic murine model of crescentic glomerulonephritis. We found that increased deposition of extracellular matrix fibers by fibroblastic reticular cells in the kidney lymph node was associated with the propagation of high endothelial venules, specialized blood vessels through which lymphocytes enter the lymph node, as well as with expansion of the lymphatic vasculature. The kidney lymph node also contained an expanding population of pro-inflammatory T cells. Removal of the kidney lymph node, depletion of fibroblastic reticular cells, and treatment with anti-podoplanin antibody each resulted in reduction of kidney injury. Our findings suggest that modulating the activity of fibroblastic reticular cells may be a novel therapeutic approach in crescentic glomerulonephritis.


Subject(s)
Fibroblasts/pathology , Glomerulonephritis/pathology , Kidney/pathology , Lymph Nodes/pathology , Animals , Capillaries/pathology , Disease Models, Animal , Extracellular Matrix/pathology , Glomerulonephritis/immunology , Humans , Kidney/blood supply , Kidney/immunology , Lymph Nodes/blood supply , Lymph Nodes/immunology , Lymphatic Vessels/pathology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology
16.
Kidney Int ; 94(5): 855-857, 2018 11.
Article in English | MEDLINE | ID: mdl-30348302

ABSTRACT

Risk (or susceptibility) alleles for primary membranous nephropathy exist within the DQ and DR loci of the human leukocyte antigen (HLA) region of chromosome 6. The discussed study identifies a novel allele, HLA DRB1*1502, in a Han Chinese cohort that acts as a modifier allele by associating not with the phenotype of membranous nephropathy, but rather with the severity of disease. This commentary addresses the potential biologic aspects of these new data.


Subject(s)
Alleles , Glomerulonephritis, Membranous/genetics , Amino Acids/genetics , HLA Antigens , HLA-DRB1 Chains/genetics , Humans , Phenotype
17.
JCI Insight ; 3(12)2018 06 21.
Article in English | MEDLINE | ID: mdl-29925693

ABSTRACT

Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.


Subject(s)
Epithelial Cells/metabolism , Kidney Glomerulus/metabolism , Kruppel-Like Transcription Factors/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cell Cycle , Cell Proliferation , Disease Models, Animal , Epithelial Cells/pathology , Glomerulosclerosis, Focal Segmental , Humans , Interleukin-6 , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Glomerulus/pathology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nephritis/blood , Podocytes/pathology , Transcription Factors
18.
Kidney Int Rep ; 3(2): 464-475, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29725651

ABSTRACT

INTRODUCTION: Chronic kidney damage is routinely assessed semiquantitatively by scoring the amount of fibrosis and tubular atrophy in a renal biopsy sample. Although image digitization and morphometric techniques can better quantify the extent of histologic damage, we need more widely applicable ways to stratify kidney disease severity. METHODS: We leveraged a deep learning architecture to better associate patient-specific histologic images with clinical phenotypes (training classes) including chronic kidney disease (CKD) stage, serum creatinine, and nephrotic-range proteinuria at the time of biopsy, and 1-, 3-, and 5-year renal survival. Trichrome-stained images processed from renal biopsy samples were collected on 171 patients treated at the Boston Medical Center from 2009 to 2012. Six convolutional neural network (CNN) models were trained using these images as inputs and the training classes as outputs, respectively. For comparison, we also trained separate classifiers using the pathologist-estimated fibrosis score (PEFS) as input and the training classes as outputs, respectively. RESULTS: CNN models outperformed PEFS across the classification tasks. Specifically, the CNN model predicted the CKD stage more accurately than the PEFS model (κ = 0.519 vs. 0.051). For creatinine models, the area under curve (AUC) was 0.912 (CNN) versus 0.840 (PEFS). For proteinuria models, AUC was 0.867 (CNN) versus 0.702 (PEFS). AUC values for the CNN models for 1-, 3-, and 5-year renal survival were 0.878, 0.875, and 0.904, respectively, whereas the AUC values for PEFS model were 0.811, 0.800, and 0.786, respectively. CONCLUSION: The study demonstrates a proof of principle that deep learning can be applied to routine renal biopsy images.

19.
Am J Physiol Renal Physiol ; 315(3): F595-F606, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29790391

ABSTRACT

Acute glomerulonephritis is characterized by rapid glomerular neutrophil recruitment, proteinuria, and glomerular hypercellularity. The current study tested the hypothesis that the release of neutrophil granule contents plays a role in both the loss of filtration barrier leading to proteinuria and the increase in glomerular cells. Inhibition of neutrophil exocytosis with a peptide inhibitor prevented proteinuria and attenuated podocyte and endothelial cell injury but had no effect on glomerular hypercellularity in an experimental acute glomerulonephritis model in mice. Cultivation of podocytes with neutrophil granule contents disrupted cytoskeletal organization, an in vitro model for podocyte effacement and loss of filtration barrier. Activated, cultured podocytes released cytokines that stimulated neutrophil chemotaxis, primed respiratory burst activity, and stimulated neutrophil exocytosis. We conclude that crosstalk between podocytes and neutrophils contributes to disruption of the glomerular filtration barrier in acute glomerulonephritis. Neutrophil granule products induce podocyte injury but do not participate in the proliferative response of intrinsic glomerular cells.


Subject(s)
Actin Cytoskeleton/metabolism , Anti-Glomerular Basement Membrane Disease/metabolism , Cell Communication , Exocytosis , Glomerular Filtration Rate , Neutrophils/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Actin Cytoskeleton/pathology , Animals , Anti-Glomerular Basement Membrane Disease/pathology , Anti-Glomerular Basement Membrane Disease/physiopathology , Anti-Glomerular Basement Membrane Disease/prevention & control , Cell Line , Cytokines/metabolism , Disease Models, Animal , Exocytosis/drug effects , Female , Gene Products, tat/pharmacology , Humans , Male , Mice, Inbred C57BL , Neutrophil Activation , Neutrophil Infiltration , Neutrophils/drug effects , Podocytes/pathology , Proteinuria/pathology , Proteinuria/physiopathology , Proteinuria/prevention & control , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/pharmacology , Respiratory Burst , SNARE Proteins/pharmacology
20.
J Am Soc Nephrol ; 29(2): 644-653, 2018 02.
Article in English | MEDLINE | ID: mdl-29074737

ABSTRACT

Primary renal tubulointerstitial disease resulting from proximal tubule antigen-specific antibodies and immune complex formation has not been well characterized in humans. We report a cohort of patients with a distinct, underappreciated kidney disease characterized by kidney antibrush border antibodies and renal failure (ABBA disease). We identified ten patients with ABBA disease who had a combination of proximal tubule damage, IgG-positive immune deposits in the tubular basement membrane, and circulating antibodies reactive with normal human kidney proximal tubular brush border. All but one of the patients also had segmental glomerular deposits on renal biopsy specimen. Patients with ABBA disease were elderly and presented with AKI and subnephrotic proteinuria. Serum from all patients but not controls recognized a high molecular weight protein in renal tubular protein extracts that we identified as LDL receptor-related protein 2 (LRP2), also known as megalin, by immunoprecipitation and mass spectrometry. Immunostaining revealed that LRP2 specifically colocalized with IgG in the tubular immune deposits on the ABBA biopsy specimen but not the control specimen analyzed. Finally, ABBA serum samples but not control samples showed reactivity against recombinantly expressed N-terminal LRP2 fragments on Western blots and immunoprecipitated the recombinantly expressed N-terminal region of LRP2. This case series details the clinicopathologic findings of patients with ABBA disease and shows that the antigenic target of these autoantibodies is LRP2. Future studies are needed to determine the disease prevalence, stimulus for ABBA, and optimal treatment.


Subject(s)
Autoantibodies/blood , Kidney Tubules, Proximal/immunology , Low Density Lipoprotein Receptor-Related Protein-2/immunology , Nephritis, Interstitial/immunology , Acute Kidney Injury/immunology , Aged , Aged, 80 and over , Basement Membrane/metabolism , Female , Humans , Immunoglobulin G/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Microvilli/immunology , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...