Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(576)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441429

ABSTRACT

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNß that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNß resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , Humans , Interferon Type I/pharmacology , Viral Load , Virus Replication
2.
J Clin Invest ; 128(7): 3102-3115, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29911997

ABSTRACT

BACKGROUND: The effect of a brief analytical treatment interruption (ATI) on the HIV-1 latent reservoir of individuals who initiate antiretroviral therapy (ART) during chronic infection is unknown. METHODS: We evaluated the impact of transient viremia on the latent reservoir in participants who underwent an ATI and at least 6 months of subsequent viral suppression in a clinical trial testing the effect of passive infusion of the broadly neutralizing Ab VRC01 during ATI. RESULTS: Measures of total HIV-1 DNA, cell-associated RNA, and infectious units per million cells (IUPM) (measured by quantitative viral outgrowth assay [QVOA]) were not statistically different before or after ATI. Phylogenetic analyses of HIV-1 env sequences from QVOA and proviral DNA demonstrated little change in the composition of the virus populations comprising the pre- and post-ATI reservoir. Expanded clones were common in both QVOA and proviral DNA sequences. The frequency of clonal populations differed significantly between QVOA viruses, proviral DNA sequences, and the viruses that reactivated in vivo. CONCLUSIONS: The results indicate that transient viremia from ATI does not substantially alter measures of the latent reservoir, that clonal expansion is prevalent within the latent reservoir, and that characterization of latent viruses that can reactivate in vivo remains challenging. TRIAL REGISTRATION: ClinicalTrials.gov NCT02463227FUNDING. Funding was provided by the NIH.


Subject(s)
Anti-Retroviral Agents/administration & dosage , HIV Infections/drug therapy , HIV Infections/virology , HIV-1 , Adult , Antibodies, Monoclonal/administration & dosage , Broadly Neutralizing Antibodies , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , DNA, Viral/blood , DNA, Viral/genetics , Drug Administration Schedule , Genes, env , Genetic Variation/drug effects , HIV Antibodies , HIV Envelope Protein gp160/genetics , HIV-1/classification , HIV-1/drug effects , HIV-1/genetics , Humans , Male , Middle Aged , Phylogeny , Proviruses/classification , Proviruses/drug effects , Proviruses/genetics , Viral Load/drug effects , Viremia/drug therapy , Viremia/virology , Virus Latency/drug effects , Virus Latency/genetics
3.
N Engl J Med ; 375(21): 2037-2050, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27959728

ABSTRACT

BACKGROUND: The discovery of potent and broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus (HIV) has made passive immunization a potential strategy for the prevention and treatment of HIV infection. We sought to determine whether passive administration of VRC01, a bNAb targeting the HIV CD4-binding site, can safely prevent or delay plasma viral rebound after the discontinuation of antiretroviral therapy (ART). METHODS: We conducted two open-label trials (AIDS Clinical Trials Group [ACTG] A5340 and National Institutes of Health [NIH] 15-I-0140) of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of VRC01 in persons with HIV infection who were undergoing interruption of ART. RESULTS: A total of 24 participants were enrolled, and one serious alcohol-related adverse event occurred. Viral rebound occurred despite plasma VRC01 concentrations greater than 50 µg per milliliter. The median time to rebound was 4 weeks in the A5340 trial and 5.6 weeks in the NIH trial. Study participants were more likely than historical controls to have viral suppression at week 4 (38% vs. 13%, P=0.04 by a two-sided Fisher's exact test in the A5340 trial; and 80% vs. 13%, P<0.001 by a two-sided Fisher's exact test in the NIH trial) but the difference was not significant at week 8. Analyses of virus populations before ART as well as before and after ART interruption showed that VRC01 exerted pressure on rebounding virus, resulting in restriction of recrudescent viruses and selection for preexisting and emerging antibody neutralization-resistant virus. CONCLUSIONS: VRC01 slightly delayed plasma viral rebound in the trial participants, as compared with historical controls, but it did not maintain viral suppression by week 8. In the small number of participants enrolled in these trials, no safety concerns were identified with passive immunization with a single bNAb (VRC01). (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTG A5340 and NIH 15-I-0140 ClinicalTrials.gov numbers, NCT02463227 and NCT02471326 .).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , HIV Infections/drug therapy , HIV/isolation & purification , Viremia/prevention & control , Adult , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Neutralizing/adverse effects , Broadly Neutralizing Antibodies , Female , HIV/genetics , HIV Antibodies , HIV Infections/virology , Historically Controlled Study , Humans , Male , Middle Aged , Phylogeny , RNA, Viral/blood , Viral Load
4.
Biochem Biophys Res Commun ; 450(1): 818-823, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24955853

ABSTRACT

Prior work established that a deficiency in the cysteine protease dipeptidyl peptidase I (DPPI) improves survival following polymicrobial septic peritonitis. To test whether DPPI regulates survival from severe lung infections, DPPI(-/-) mice were studied in a Klebsiella pneumoniae lung infection model, finding that survival in DPPI(-/-) mice is significantly better than in DPPI(+/+) mice 8d after infection. DPPI(-/-) mice have significantly fewer bacteria in the lung than infected DPPI(+/+) mice, but no difference in lung histopathology, lung injury, or cytokine levels. To explore mechanisms of enhanced bacterial clearance in DPPI(-/-) mice, we examined the status of pulmonary collectins, finding that levels of surfactant protein D, but not of surfactant protein A, are higher in DPPI(-/-) than in DPPI(+/+) BAL fluid, and that DPPI(-/-) BAL fluid aggregate bacteria more effectively than control BAL fluid. Sequencing of the amino terminus of surfactant protein D revealed two or eight additional amino acids in surfactant protein D isolated from DPPI(-/-) mice, suggesting processing by DPPI. These results establish that DPPI is a major determinant of survival following Klebsiella pneumoniae lung infection and suggest that the survival disadvantage in DPPI(+/+) mice is in part due to processing of surfactant protein D by DPPI.


Subject(s)
Cathepsin C/metabolism , Klebsiella Infections/metabolism , Klebsiella pneumoniae/metabolism , Lung/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism , Survival Rate , Animals , Cathepsin C/genetics , Klebsiella Infections/microbiology , Lung/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Tissue Distribution
5.
J Immunol ; 192(10): 4655-65, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24729611

ABSTRACT

In murine schistosomiasis, immunopathology and cytokine production in response to parasite eggs are uneven and strain dependent. CBA/J (CBA) mice develop severe hepatic granulomatous inflammation associated with prominent Th17 cell responses driven by dendritic cell (DC)-derived IL-1ß and IL-23. Such Th17 cells fail to develop in low-pathology C57BL/6 (BL/6) mice, and the reasons for these strain-specific differences in APC reactivity to eggs remain unclear. We show by gene profiling that CBA DCs display an 18-fold higher expression of the C-type lectin receptor CD209a, a murine homolog of human DC-specific ICAM-3-grabbing nonintegrin, compared with BL/6 DCs. Higher CD209a expression was observed in CBA splenic and granuloma APC subpopulations, but only DCs induced Th17 cell differentiation in response to schistosome eggs. Gene silencing in CBA DCs and overexpression in BL/6 DCs demonstrated that CD209a is essential for egg-elicited IL-1ß and IL-23 production and subsequent Th17 cell development, which is associated with SRC, RAF-1, and ERK1/2 activation. These findings reveal a novel mechanism controlling the development of Th17 cell-mediated severe immunopathology in helminthic disease.


Subject(s)
Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Lectins, C-Type/immunology , Receptors, Cell Surface/immunology , Schistosoma/immunology , Schistosomiasis/immunology , Th17 Cells/immunology , Animals , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Line , Dendritic Cells/metabolism , Dendritic Cells/pathology , Enzyme Activation/genetics , Enzyme Activation/immunology , Female , Gene Expression Regulation/genetics , Gene Silencing/immunology , Granuloma/genetics , Granuloma/immunology , Granuloma/pathology , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-23/genetics , Interleukin-23/immunology , Interleukin-23/metabolism , Lectins, C-Type/biosynthesis , Lectins, C-Type/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Inbred CBA , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/immunology , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/immunology , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/genetics , Schistosoma/genetics , Schistosoma/metabolism , Schistosomiasis/genetics , Schistosomiasis/metabolism , Schistosomiasis/pathology , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Th17 Cells/metabolism , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...