Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Eng ; 18(1): 28, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637787

ABSTRACT

Periodontitis, a chronic inflammatory condition caused by bacteria, often causes gradual destruction of the components that support teeth, such as the alveolar bone, cementum, periodontal ligament, and gingiva. This ultimately results in teeth becoming loose and eventually falling out. Timely identification has a crucial role in preventing and controlling its progression. Clinical measures are used to diagnose periodontitis. However, now, there is a hunt for alternative diagnostic and monitoring methods due to the progress of technology. Various biomarkers have been assessed using multiple bodily fluids as sample sources. Furthermore, conventional periodontal categorization factors do not provide significant insights into the present disease activity, severity and amount of tissue damage, future development, and responsiveness to treatment. In recent times, there has been a growing utilization of nanoparticle (NP)-based detection strategies to create quick and efficient detection assays. Every single one of these platforms leverages the distinct characteristics of NPs to identify periodontitis. Plasmonic NPs include metal NPs, quantum dots (QDs), carbon base NPs, and nanozymes, exceptionally potent light absorbers and scatterers. These find application in labeling, surface-enhanced spectroscopy, and color-changing sensors. Fluorescent NPs function as photostable and sensitive instruments capable of labeling various biological targets. This article presents a comprehensive summary of the latest developments in the effective utilization of various NPs to detect periodontitis.

2.
J Nanobiotechnology ; 22(1): 207, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664778

ABSTRACT

Several studies suggest that oral pathogenic biofilms cause persistent oral infections. Among these is periodontitis, a prevalent condition brought on by plaque biofilm. It can even result in tooth loss. Furthermore, the accumulation of germs around a dental implant may lead to peri-implantitis, which damages the surrounding bone and gum tissue. Furthermore, bacterial biofilm contamination on the implant causes soft tissue irritation and adjacent bone resorption, severely compromising dental health. On decontaminated implant surfaces, however, re-osseointegration cannot be induced by standard biofilm removal techniques such as mechanical cleaning and antiseptic treatment. A family of nanoparticles known as nanozymes (NZs) comprise highly catalytically active multivalent metal components. The most often employed NZs with antibacterial activity are those that have peroxidase (POD) activity, among other types of NZs. Since NZs are less expensive, more easily produced, and more stable than natural enzymes, they hold great promise for use in various applications, including treating microbial infections. NZs have significantly contributed to studying implant success rates and periodontal health maintenance in periodontics and implantology. An extensive analysis of the research on various NZs and their applications in managing oral health conditions, including dental caries, dental pulp disorders, oral ulcers, peri-implantitis, and bacterial infections of the mouth. To combat bacteria, this review concentrates on NZs that imitate the activity of enzymes in implantology and periodontology. With a view to the future, there are several ways that NZs might be used to treat dental disorders antibacterially.


Subject(s)
Anti-Bacterial Agents , Biofilms , Dental Implants , Peri-Implantitis , Periodontitis , Peri-Implantitis/drug therapy , Peri-Implantitis/microbiology , Humans , Periodontitis/drug therapy , Periodontitis/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Dental Implants/microbiology , Animals , Nanoparticles/chemistry , Bacteria/drug effects
3.
Magn Reson Chem ; 49(5): 213-20, 2011 May.
Article in English | MEDLINE | ID: mdl-21387402

ABSTRACT

Herein, a series of separate dynamic (1)H NMR effects are reported at different temperatures within a particular enaminoester involving a phenanthridine. These effects are attributed to restricted rotation around the two single bonds such as carbon-carbon (H(a)-C-C-H(b)) and nitrogen-carbon (NCCOOCH(3)). Activation energies (E(a)) for these interconversion processes in their rotational isomers are equal to 20 and 20 ± 1 kJ mol(-1), respectively. In addition, three dynamic (1)H NMR effects are investigated at different temperatures for a particular phosphorus ylide involving a 2-indolinone around the carbon-carbon single bond (H-C-C-PPh(3)) within the two Z- and E-rotational isomers and partial carbon-carbon double bond (OCH(3)-C=C-PPh(3)). Activation energies (E(a)) for these interconversion processes in rotational isomers are equal to 53, 63 and 73 ± 1 kJ mol(-1) , respectively. This behavior was also observed for other phosphorus ylide containing 2-mercaptobenzoxazole around the carbon-carbon single bond and partial carbon-carbon double bond with their relevant activation energies containing 13, 10 and 75 ± 1 kJ mol(-1), respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...