Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 179: 116956, 2024 02.
Article in English | MEDLINE | ID: mdl-37951520

ABSTRACT

Bone tissue engineering holds great promise for the regeneration of damaged or severe bone defects. However, several challenges hinder its translation into clinical practice. To address these challenges, interdisciplinary efforts and advances in biomaterials, cell biology, and bioengineering are required. In recent years, nano-hydroxyapatite (nHA)-based scaffolds have emerged as a promising approach for the development of bone regenerative agents. The unique similarity of nHA with minerals found in natural bones promotes remineralization and stimulates bone growth, which are crucial factors for efficient bone regeneration. Moreover, nHA exhibits desirable properties, such as strong chemical interactions with bone and facilitation of tissue growth, without inducing inflammation or toxicity. It also promotes osteoblast survival, adhesion, and proliferation, as well as increasing alkaline phosphatase activity, osteogenic differentiation, and bone-specific gene expression. However, it is important to note that the effect of nHA on osteoblast behavior is dose-dependent, with cytotoxic effects observed at higher doses. Additionally, the particle size of nHA plays a crucial role, with smaller particles having a more significant impact. Therefore, in this review, we highlighted the potential of nHA for improving bone regeneration processes and summarized the available data on bone cell response to nHA-based scaffolds. In addition, an attempt is made to portray the current status of bone tissue engineering using nHA/polymer hybrids and some recent scientific research in the field.


Subject(s)
Durapatite , Osteogenesis , Durapatite/pharmacology , Durapatite/chemistry , Tissue Scaffolds/chemistry , Regenerative Medicine , Biocompatible Materials , Tissue Engineering , Bone Regeneration
2.
Front Psychiatry ; 14: 1116892, 2023.
Article in English | MEDLINE | ID: mdl-37252132

ABSTRACT

Objectives: Psychogenic non-epileptic seizure (PNES) is the most common non-epileptic disorder in patients referring to epilepsy centers. Contrary to common beliefs about the disease's harmlessness, the death rate of PNES patients is similar to drug-resistant epilepsy. Meanwhile, the molecular pathomechanism of PNES is unknown with very limited related research. Thus, the aim of this in silico study was to find different proteins and hormones associated with PNES via a systems biology approach. Methods: Different bioinformatics databases and literature review were used to find proteins associated with PNES. The protein-hormone interaction network of PNES was constructed to discover its most influential compartments. The pathways associated with PNES pathomechanism were found by enrichment analysis of the identified proteins. Besides, the relationship between PNES-related molecules and psychiatric diseases was discovered, and the brain regions that could express altered levels of blood proteins were discovered. Results: Eight genes and three hormones were found associated with PNES through the review process. Proopiomelanocortin (POMC), neuropeptide Y (NPY), cortisol, norepinephrine, and brain-derived neurotrophic factor (BDNF) were identified to have a high impact on the disease pathogenesis network. Moreover, activation of Janus kinase-signaling transducer and activator of transcription (JAK-STAT) and JAK, as well as signaling of growth hormone receptor, phosphatidylinositol 3-kinase /protein kinase B (PI3K/AKT), and neurotrophin were found associated with PNES molecular mechanism. Several psychiatric diseases such as depression, schizophrenia, and alcohol-related disorders were shown to be associated with PNES predominantly through signaling molecules. Significance: This study was the first to gather the biochemicals associated with PNES. Multiple components and pathways and several psychiatric diseases associated with PNES, and some brain regions that could be altered during PNES were suggested, which should be confirmed in further studies. Altogether, these findings could be used in future molecular research on PNES patients.

3.
Epilepsia Open ; 8(2): 509-516, 2023 06.
Article in English | MEDLINE | ID: mdl-36929812

ABSTRACT

OBJECTIVE: We aimed to explore the underlying pathomechanisms of the comorbidity between three common systemic autoimmune disorders (SADs) [i.e., insulin-dependent diabetes mellitus (IDDM), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA)] and temporal lobe epilepsy (TLE), using bioinformatics tools. We hypothesized that there are shared genetic variations among these four conditions. METHODS: Different databases (DisGeNET, Harmonizome, and Enrichr) were searched to find TLE-associated genes with variants; their single nucleotide polymorphisms (SNPs) were gathered from the literature. We also did a separate literature search using PubMed with the following keywords for original articles: "TLE" or "Temporal lobe epilepsy" AND "genetic variation," "single nucleotide polymorphism," "SNP," or "genetic polymorphism." In the next step, the SNPs associated with TLE were searched in the LitVar database to find the shared gene variations with RA, SLE, and IDDM. RESULTS: Ninety unique SNPs were identified to be associated with TLE. LitVar search identified two SNPs that were shared between TLE and all three SADs (i.e., IDDM, SLE, and RA). The first SNP was rs16944 on the Interleukin-1ß (IL-1ß) gene. The second genetic variation was ε4 variation of apolipoprotein E (APOE) gene. SIGNIFICANCE: The shared genetic variations (i.e., rs16944 on the IL-1ß gene and ε4 variation of the APOE gene) may explain the underlying pathomechanisms of the comorbidity between three common SADs (i.e., IDDM, SLE, and RA) and TLE. Exploring such shared genetic variations may help find targeted therapies for patients with TLE, especially those with drug-resistant seizures who also have comorbid SADs.


Subject(s)
Arthritis, Rheumatoid , Diabetes Mellitus, Type 1 , Epilepsy, Temporal Lobe , Lupus Erythematosus, Systemic , Humans , Polymorphism, Single Nucleotide/genetics , Epilepsy, Temporal Lobe/genetics , Apolipoproteins E/genetics , Lupus Erythematosus, Systemic/genetics , Temporal Lobe
4.
Sci Rep ; 12(1): 9099, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650297

ABSTRACT

Gastric cancer is the fourth cause of cancer death globally, and gastric adenocarcinoma is its most common type. Efforts for the treatment of gastric cancer have increased its median survival rate by only seven months. Due to the relatively low response of gastric cancer to surgery and adjuvant therapy, as well as the complex role of risk factors in its incidences, such as protein-pomp inhibitors (PPIs) and viral and bacterial infections, we aimed to study the pathological pathways involved in gastric cancer development and investigate possible medications by systems biology and bioinformatics tools. In this study, the protein-protein interaction network was analyzed based on microarray data, and possible effective compounds were discovered. Non-coding RNA versus coding RNA interaction network and gene-disease network were also reconstructed to better understand the underlying mechanisms. It was found that compounds such as amiloride, imatinib, omeprazole, troglitazone, pantoprazole, and fostamatinib might be effective in gastric cancer treatment. In a gene-disease network, it was indicated that diseases such as liver carcinoma, breast carcinoma, liver fibrosis, prostate cancer, ovarian carcinoma, and lung cancer were correlated with gastric adenocarcinoma through specific genes, including hgf, mt2a, mmp2, fbn1, col1a1, and col1a2. It was shown that signaling pathways such as cell cycle, cell division, and extracellular matrix organization were overexpressed, while digestion and ion transport pathways were underexpressed. Based on a multilevel systems biology analysis, hub genes in gastric adenocarcinoma showed participation in the pathways such as focal adhesion, platelet activation, gastric acid secretion, HPV infection, and cell cycle. PPIs are hypothesized to have a therapeutic effect on patients with gastric cancer. Fostamatinib seems a potential therapeutic drug in gastric cancer due to its inhibitory effect on two survival genes. However, these findings should be confirmed through experimental investigations.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Adenocarcinoma/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...