Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932077

ABSTRACT

In this work, we focused on the bioactivity and antibacterial behavior of PLA-based electrospun fibers, efibers, reinforced with both MgO and Mg(OH)2 nanoparticles, NPs. The evolution of PLA-based efibers was followed in terms of morphology, FTIR, XRD, and visual appearance. The bioactivity was discussed in terms of hydroxyapatite growth after 28 days, considered as T28, of immersion in simulated body fluid, SBF. In particular, the biomineralization process evidenced after immersion in SBF started at T14 in both systems. The number of precipitated crystals increased by increasing the amount of both NPs. The chemical composition of the precipitated crystals was also characterized in terms of the Ca/P molar ratio after T28 of immersion in SBF, indicating the presence of hydroxyapatite on the surface of both reinforced efibers. Moreover, a reduction in the average diameter of the PLA-based efibers was observed, reaching a maximum reduction of 46 and 60% in the average diameter of neat PLA and PLA:OLA efibers, respectively, after 28 days of immersion in SBF. The antibacterial behavior of the MgO and Mg(OH)2 NPs in the PLA-based electrospun fibers was tested against Escherichia coli, E. coli, as the Gram-negative bacteria, and Staphylococcus aureus, S. aureus, as the Gram-positive bacteria, obtaining the best antibacterial activity against the Gram-negative bacteria E. coli of 21 ± 2% and 34 ± 6% for the highest concentration of MgO and Mg(OH)2 NPs, respectively.

2.
Polymers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675026

ABSTRACT

Biodegradable blends based on plasticized poly(lactic acid) PLA and thermoplastic starch (TPS) have been obtained. The influence of the PLA plasticizer as a compatibility agent has been studied by using two different plasticizers such as neat oligomeric lactic acid (OLA) and functionalized with maleic acid (mOLA). In particular, the morphological, thermal, and mechanical properties have been studied as well as the shape memory ability of the melt-processed materials. Therefore, the influence of the interaction between different plasticizers and the PLA matrix as well as the compatibility between the two polymeric phases on the thermally-activated shape memory properties have been studied. It is very interesting to use the same additive able to act as both plasticizer and compatibilizer, decreasing the glass transition temperature of PLA to a temperature close to the physiological one, obtaining a material suitable for potential biomedical applications. In particular, we obtain that OLA-plasticized blend (oPLA/TPS) show very good thermally-activated capability at 45 °C and 50% deformation, while the blend obtained by using maleic OLA (moPLA/TPS) did not show shape memory behavior at 45 °C and 50% deformation. This fact is due to their morphological changes and the loss of two well-distinguished phases, one acting as fixed phase and the other one acting as switching phase to typically obtain shape memory response. Therefore, the thermally-activated shape memory results show that it is very important to make a balance between plasticizer and compatibilizer, considering the need of two well-established phases to obtain shape memory response.

3.
Nanomaterials (Basel) ; 13(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570553

ABSTRACT

In this work, electrospun nanofibers based on polylactic acid, PLA, reinforced with ZnO nanoparticles have been studied, considering the growing importance of electrospun mats based on biopolymers for their applications in different fields. Specifically, electrospun nanofibers based on PLA have been prepared by adding ZnO nanoparticles at different concentrations, such as 0.5, 1, 3, 5, 10 and 20 wt%, with respect to the polymer matrix. The materials have been characterized in terms of their morphological, mechanical, and thermal properties, finding 3 wt% as the best concentration to produce PLA nanofibers reinforced with ZnO nanoparticles. In addition, hydrolytic degradation in phosphate buffer solution (PBS) was carried out to study the effect of ZnO nanoparticles on the degradation behavior of PLA-based electrospun nanofiber mats, obtaining an acceleration in the degradation of the PLA electrospun mat.

4.
Polymers (Basel) ; 15(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37112054

ABSTRACT

Additive manufacturing, in particular the fused deposition method, is a quite new interesting technique used to obtain specific 3D objects by depositing layer after layer of material. Generally, commercial filaments can be used in 3D printing. However, the obtention of functional filaments is not so easy to reach. In this work, we obtain filaments based on poly(lactic acid), PLA, reinforced with different amounts of magnesium, Mg, microparticles, using a two-step extrusion process, in order to study how processing can affect the thermal degradation of the filaments; we additionally study their in vitro degradation, with a complete release of Mg microparticles after 84 days in phosphate buffer saline media. Therefore, considering that we want to obtain a functional filament for further 3D printing, the simpler the processing, the better the result in terms of a scalable approach. In our case, we obtain micro-composites via the double-extrusion process without degrading the materials, with good dispersion of the microparticles into the PLA matrix without any chemical or physical modification of the microparticles.

5.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904481

ABSTRACT

The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.

6.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770668

ABSTRACT

In this work, the in vitro degradation behavior of nanofibers was investigated in phosphate buffer solution (PBS) and simulated body fluid (SBF) to study their degradation behavior, as well as their bioactivity. The degradation was studied at different immersion times in order to evaluate how the presence of Mg-based nanoparticles can affect the degradation in terms of morphology, crystallinity, degradation rate and pH changes, and finally to evaluate the bioactivity of PCL-based electrospun nanofibers. We found that the degradation of the materials takes more than 3 months; however, the presence of nanoparticles seems to have an accelerating effect on the degradation of the electrospun nanofibers based on PCL. In fact, a reduction in diameter of almost 50% was observed with the highest content of both types of nanoparticles and an increase in crystallinity after 296 days of immersion in PBS. Moreover, the carbonyl index was calculated from an FTIR analysis, and a reduction of 20-30% was observed due to the degradation effect. Additionally, the bioactivity of PCL-based electrospun nanofibers was studied and the formation of crystals on the nanofibers surface was detected, except for neat electrospun PCL related to the formation of NaCl and apatites, depending on the amount and type of nanoparticles. The presence of apatites was confirmed by an XRD analysis and FT-IR analysis observing the characteristic peaks; furthermore, the EDX analysis demonstrated the formation of apatites than can be reconducted to the presence of HA when 20 wt% of nanoparticles is added to the PCL electrospun fibers.

7.
Polymers (Basel) ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267818

ABSTRACT

This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.

8.
Molecules ; 26(16)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34443512

ABSTRACT

In this work, different poly (lactic acid) (PLA)-based nanocomposite electrospun fibers, reinforced with both organic and inorganic nanoparticles, were obtained. As organic fibers, cellulose nanocrystals, CNC, both neat and functionalized by "grafting from" reaction, chitosan and graphene were used; meanwhile, hydroxyapatite and silver nanoparticles were used as inorganic fibers. All of the nanoparticles were added at 1 wt% with respect to the PLA matrix in order to be able to compare their effect. The main aim of this work was to study the morphological, thermal and mechanical properties of the different systems, looking for differences between the effects of the addition of organic or inorganic nanoparticles. No differences were found in either the glass transition temperature or the melting temperature between the different electrospun systems. However, systems reinforced with both neat and functionalized CNC exhibited an enhanced degree of crystallinity of the electrospun fibers, by up to 12.3%. From a mechanical point of view, both organic and inorganic nanoparticles exhibited a decreased elastic modulus and tensile strength in comparison to neat electrospun PLA fibers, improving their elongation at break. Furthermore, all of the organic and inorganic reinforced systems disintegrated under composting conditions after 35 days.

9.
Polymers (Basel) ; 12(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532052

ABSTRACT

In this work, different nanocomposite electrospun fiber mats were obtained based on poly(e-caprolactone) (PCL) and reinforced with both organic and inorganic nanoparticles. In particular, on one side, cellulose nanocrystals (CNC) were synthesized and functionalized by "grafting from" reaction, using their superficial OH- group to graft PCL chains. On the other side, commercial chitosan, graphene as organic, while silver, hydroxyapatite, and fumed silica nanoparticles were used as inorganic reinforcements. All the nanoparticles were added at 1 wt% with respect to the PCL polymeric matrix in order to compare the different behavior of the woven no-woven nanocomposite electrospun fibers with a fixed amount of both organic and inorganic nanoparticles. From the thermal point of view, no difference was found between the effect of the addition of organic or inorganic nanoparticles, with no significant variation in the Tg (glass transition temperature), Tm (melting temperature), and the degree of crystallinity, leading in all cases to high crystallinity electrospun mats. From the mechanical point of view, the highest values of Young modulus were obtained when graphene, CNC, and silver nanoparticles were added to the PCL electrospun fibers. Moreover, all the nanoparticles used, both organic and inorganic, increased the flexibility of the electrospun mats, increasing their elongation at break.

SELECTION OF CITATIONS
SEARCH DETAIL
...