Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 21(5): 881-6, 2000 May.
Article in English | MEDLINE | ID: mdl-10783307

ABSTRACT

Previous studies have demonstrated that 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) increases cell recovery in the human mammary epithelial cell line MCF-10A grown under growth factor-restricted conditions. TCDD was also found to mimic growth factor signaling pathways by stimulating the tyrosine phosphorylation of numerous effector molecules, and increased phosphatidylinositol 3-kinase (PI3K) activity in the absence of exogenously added growth factors. In the present studies, we have expanded on these initial results to show that TCDD (3-30 nM) increases cell recovery on days 2-6 by as much as 80% when insulin or epidermal growth factor (EGF) was removed from the media. The mechanism for this effect appears to be complex as TCDD inhibited apoptosis stimulated by EGF, or EGF and insulin, withdrawal by almost 80% as determined by Annexin V binding. However, withdrawal of insulin alone did not induce apoptosis even though TCDD did increase cell number in its absence. These results were corroborated by immunoblot analysis of poly(ADP-ribose) polymerase cleavage. Since TCDD stimulates PI3K activity, the phosphorylation status of Akt, a serine/threonine kinase that mediates PI3K-dependent inhibition of apoptosis, was examined. Immunoblot analysis revealed that TCDD causes a transient increase in the phosphorylated form of Akt that peaks at 6 h and disappears by 12 h. It appears that EGF stimulates an anti-apoptotic pathway, while insulin signals a pro-mitogenic pathway. By stimulating or mimicking one or both of these pathways TCDD may alter tightly regulated growth pathways in the MCF-10A cell line.


Subject(s)
Apoptosis/drug effects , Breast/drug effects , Epidermal Growth Factor/pharmacology , Insulin/pharmacology , Polychlorinated Dibenzodioxins/pharmacology , Breast/cytology , Humans , Hydrolysis , Oncogene Protein v-akt , Phosphorylation , Poly(ADP-ribose) Polymerases/metabolism , Retroviridae Proteins, Oncogenic/metabolism , Tumor Cells, Cultured
2.
Methods ; 19(1): 28-35, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10525435

ABSTRACT

Flow cytometry is an emerging technology that has numerous applications to immunotoxicity testing. The use and development of high-speed single-cell laser-based assays capable of quantitation of fluorescence, light scatter, and electrical impedance measurements can provide important information on xenobiotic-induced toxicity in defined target cell populations. The purpose of this article is to briefly review established and emerging immunotoxicology assays that use flow cytometry. In the coming years it is likely that many new flow cytometry assays will be developed and validated that will improve the sensitivity and perhaps specificity of immunotoxicity testing. Since flow cytometry is readily adaptable to high-throughput screening, it is also likely that this technology will increasingly find its place in the preclinical testing of drugs and chemicals in the pharmaceutical and chemical industries.


Subject(s)
Flow Cytometry/methods , Immunologic Techniques , Toxicology/methods , Animals , Apoptosis , Biomarkers , Calcium/metabolism , Cell Cycle , Cell Survival , DNA Damage , Flow Cytometry/trends , Fluorescent Dyes , Humans , Light , Lymphocyte Activation , Scattering, Radiation , Toxicology/trends
3.
Toxicol Appl Pharmacol ; 151(2): 367-76, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9707513

ABSTRACT

Numerous studies have demonstrated an association between polycyclic aromatic hydrocarbons (PAHs) and lymphocyte toxicity. The present study shows that, consistent with its effects on Ca2+ homeostasis, benzo[a]pyrene (BaP) induces apoptosis in Daudi cells. Terminal deoxynucleotidal transferase-mediated dUTP-biotin nick end labeling (TUNEL) analysis at 18 h revealed a significant increase in the number of cells undergoing apoptosis in response to BaP (75%), BaP-7, 8-dihydrodiol (110%), and BaP-7,8-9,10-diol epoxide (BPDE) (215%) over DMSO vehicle control cultures. By 36 h, the trend toward increasing numbers of apoptotic cells continued with the parent compound producing a 125% increase over control values and the 7, 8-dihydrodiol and BPDE metabolites producing 195% and 370% increases over controls, respectively. DNA fragmentation assays demonstrated the presence of internucleosomal cleavage products consistent with the increasing numbers of TUNEL-positive cells responding to PAHs at 18 and 36 h. Analysis of poly(ADP-ribose) polymerase (PARP) protein in BaP- and BaP-7,8-dihydrodiol-treated cells strongly suggested the involvement of cysteine proteases by the appearance of an 85-kD fragment derived from hydrolytic cleavage of PARP, a phenomenon that has been associated with apoptosis in many systems. Immunoblot analysis demonstrated that both BaP and its 7,8-dihydrodiol metabolite affected a pathway involving Bcl-2 and Bax cytosolic proteins. Daudi cells undergoing apoptosis at 36 h in response to 10 microM BaP, the parent compound, expressed moderately reduced amounts of Bcl-2 (78% of vehicle controls). At the same time point, the 7,8-dihydrodiol and BDPE metabolites at 3 microM resulted in Bcl-2 protein expression that was 52% of that seen in vehicle controls. Parallel samples analyzed for expression of Bax protein displayed a 130% increase over vehicle control in Bax expression in response to the parent compound, while the 7,8-dihydrodiol metabolite produced a 257% increase in Bax. Furthermore, the effects on increased Bax expression were observed as early as 3 h after PAH exposure. The apoptotic response to PAHs in Daudi cells was sensitive to 4-h pretreatment with 0.3 microM alpha-naphthoflavone (ANF), a known inhibitor of cytochrome P450. In TUNEL assays of cells exposed to PAHs following pretreatment with ANF, at 18 h there was a significant reduction in the number of cells undergoing apoptosis in response to ANF compared to cells that were not pretreated with the compound. The effect of the parent compound at 18 h was completely blocked with ANF pretreatment, while ANF exerted a relatively weaker, but significant, effect on BaP-7, 8-dihydrodiol-induced apoptosis. With regard to modulation of expression of apoptosis-related proteins, Bax expression was restored to that observed in vehicle-control cultures at all time points tested (3, 18, and 36 h). Bcl-2 expression was most responsive to ANF at later time points following PAH exposure (18 and 36 h); however, Bcl-2 appeared to be more sensitive to the effects of ANF alone. Taken together, these data suggest that modulation of Bcl-2 family proteins, perhaps secondary to altered Ca2+ homeostasis, plays an important role in human B cell apoptosis induced by BaP.


Subject(s)
Apoptosis/drug effects , B-Lymphocytes/drug effects , Benzo(a)pyrene/toxicity , Dihydroxydihydrobenzopyrenes/toxicity , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology , Atrial Natriuretic Factor/pharmacology , Cell Line , DNA Fragmentation , Humans , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases , Proteins/metabolism , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , bcl-2-Associated X Protein
4.
Hepatology ; 25(6): 1432-8, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9185764

ABSTRACT

Acetaminophen (N-acetyl-p-aminophenol [APAP]) hepatotoxicity is a process characterized by Ca2+ deregulation. Cellular functions utilizing Ca2+ as a second messenger molecule affect both cytosolic and nuclear signal transduction. Many studies have independently shown Ca2+-related effects on target molecules in response to toxic doses of APAP; however, the primary Ca2+ target resulting in liver necrosis has not been determined. We hypothesize that Ca2+-dependent DNA damage is a critical event in liver necrosis caused by alkylating hepatotoxins. In this study, Ca2+-dependent endonuclease activity was determined from DNA single-strand lesions measured by fluorometric analysis of DNA unwinding. The status of cytosolic Ca2+ was determined by measuring Ca2+-dependent activation of glycogen phosphorylase a. Primary cultures of mouse hepatocytes exposed to a toxic concentration of APAP showed twofold and greater increases in glycogen phosphorylase a stimulation at 6 hours, which was reversible with Ca2+-chelating agents. Cell death was preceded by a large decline in intact, double-stranded DNA. Following toxic administration of APAP, the percentage of total double-stranded DNA was significantly reduced by 2 hours. At 6 and 24 hours, genomic integrity was compromised by 26% and 37%, respectively, compared with untreated controls. Hepatotoxic effects of APAP-mediated Ca2+ deregulation were confirmed in both primary mouse hepatocytes and the human hepatoblastoma HepG2 cell line by lactate dehydrogenase (LDH) release and tetrazolium reduction using the 3-4,5-dimethylthiazole-2-yl-2,5-diphenyltetrazolium bromide thiazol blue(MTT) assay. The Ca2+ chelator, ethylene glycol-bis (beta-aminoethyl ether) N',N',N', N'-tetraacetic acid (EGTA), blocked APAP-induced phosphorylase a activation and necrotic cell death, but failed to inhibit phosphorylase a activation by the adenosine 3',5'-cyclic monophosphate (cAMP) analogue, dibutyryl cAMP, indicating little or no contribution of the cAMP pathway to phosphorylase a stimulation during APAP-induced necrotic death. Results with these in vitro models of liver injury are interpreted as supporting the hypothesis that increased Ca2+ availability plays a major role in the progression of APAP-dependent cellular necrosis, and that the nucleus is a critical target for APAP hepatotoxicity.


Subject(s)
Acetaminophen/pharmacology , Calcium/physiology , Chemical and Drug Induced Liver Injury , Cyclic AMP/physiology , DNA Damage , Liver/drug effects , Phosphorylases/metabolism , Animals , Cell Death , Cells, Cultured , Enzyme Activation/physiology , Humans , Liver/enzymology , Liver/pathology , Male , Mice , Necrosis , Phosphorylase a/metabolism , Tumor Cells, Cultured
6.
Nat Genet ; 12(4): 410-6, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8630495

ABSTRACT

We have identified a 15-bp microdeletion in a highly conserved region of the mitochondrially encoded gene for cytochrome c oxidase (COX) subunit III in a patient with severe isolated COX deficiency and recurrent myoglobinuria. The mutant mitochondrial DNA (mtDNA) comprised 92% of the mtDNA in muscle and 0.7% in leukocytes. Immunoblots and immunocytochemistry suggested a lack of assembly or instability of the complex. Microdissected muscle fibres revealed significantly higher portions of mutant mtDNA in COX-negative than in COX-positive fibres. This represents the first case of isolated COX deficiency to be defined at the molecular level.


Subject(s)
Cytochrome-c Oxidase Deficiency , Electron Transport Complex IV/genetics , Myoglobinuria/enzymology , Myoglobinuria/genetics , Sequence Deletion , Adolescent , Amino Acid Sequence , Animals , Base Sequence , DNA/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/chemistry , Female , Genotype , Histocytochemistry , Humans , Molecular Sequence Data , Muscle, Skeletal/enzymology , Phenotype , Protein Conformation , Recurrence , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...